These notes are transcribed from class notes written by Professor Simon Thomas. The notes follow the notation of Enderton's *A mathematical introduction to logic* but may be read independently. Please contact Saul Schleimer if you find any errors.

1 A few introductory remarks

In mathematical reasoning, logical arguments are used to deduce the consequences (called *theorems*) of basic assumptions (called *axioms*).

Question 1.1. What does it mean for one sentence to "follow logically" from another sentence?

Question 1.2. Suppose that a sentence σ does *not* follow logically from the set T of axioms. How can we prove that this is so?

We will begin the course by studying some basic set theory.

Motivation:

- 1. We will need this material in our study of mathematical logic.
- 2. Set theory is a foundation for all of mathematics.
- 3. Set theory is beautiful.

Remark 1.3. In a couple of weeks we will come across a natural set-theoretic statement, the Continuum Hypothesis, which can neither be proved nor disproved using the classical axioms of set theory.

2 Basic Set Theory

Notation: $\{2,3,5\} = \{2,5,5,2,3\}$. $\{0,2,4,6,\ldots\} = \{x \mid x \text{ is an even natural number}\}$. $x \in A$ means "x is an element of A". \emptyset is the empty set. $\mathbb{N} = \{0,1,2,3,\ldots\}$ is the set of natural numbers. $\mathbb{Z} = \{\ldots,-2,-1,0,1,2,\ldots\}$ is the set of integers. $\mathbb{Q} = \{a/b \mid a,b \in \mathbb{Z}, b \neq 0\}$ is the set of rational numbers. \mathbb{R} is the set of real numbers.

Axiom of Extensionality: Suppose that A, B are sets. If for all x,

 $x \in A \text{ iff } x \in B$ then A = B.

2006/01/18

Definition 2.1. Suppose that A, B are sets. Then A is a subset of B, written $A \subseteq B$, iff for all x,

if $x \in A$ then $x \in B$.

Example 2.2. $1. \mathbb{N} \subseteq \mathbb{Z}$

2. If A is any set then $\emptyset \subseteq A$.

Proposition 2.3. If $A \subseteq B$ and $B \subseteq A$, then A = B.

Proof. Let x be arbitrary. Since $A \subseteq B$, if $x \in A$ then $x \in B$. Since $B \subseteq A$, if $x \in B$ then $x \in A$. Hence $x \in A$ iff $x \in B$. By the Axion of Extensionality, A = B.

Definition 2.4. Let A, B be sets. The union of A and B, written $A \cup B$, is the set defined by

 $x \in A \cup B$ iff $x \in A$ or $x \in B$.

Proposition 2.5. $A \cup (B \cup C) = (A \cup B) \cup C$

Proof. Let x be arbitrary. Then $x \in A \cup (B \cup C)$ iff $x \in A$ or $x \in B \cup C$ iff $x \in A$ or $(x \in B \text{ or } x \in C)$ iff $x \in A$ or $x \in B$ or $x \in C$ iff $(x \in A \text{ or } x \in B)$ or $x \in C$ iff $x \in A \cup B$ or $x \in C$ iff $x \in (A \cup B) \cup C$.

Definition 2.6. Let A, B be sets. The *intersection* of A and B, written $A \cap B$ is the set defined by

 $x \in A \cup B$ iff $x \in A$ and $x \in B$.

Exercise 2.7. Prove that $A \cap (B \cap C) = (A \cap B) \cap C$.

Proposition 2.8. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Proof. Let x be arbitrary. Then $x \in A \cap (B \cup C)$ iff $x \in A$ and $x \in B \cup C$ iff $x \in A$ and $(x \in B \text{ or } x \in C)$ iff $(x \in A \text{ and } x \in B)$ or $(x \in A \text{ and } x \in C)$ iff $(x \in A \cap B)$ or $(x \in A \cap C)$ iff $x \in (A \cap B) \cup (A \cap C)$.

Exercise 2.9. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Definition 2.10. Let A, B be sets. The set theoretic difference of A and B, written $A \setminus B$, is the set defined by

 $x \in A \setminus B$ iff $x \in A$ and $x \notin B$.

2006/01/18

 $\begin{array}{l} \{1,2,3\}\smallsetminus\{3,4,5\}=\{1,2\}.\\ \mathbb{N}\diagdown\mathbb{Z}=\emptyset.\\ \mathbb{Z}\smallsetminus\mathbb{N}=\{-1,-2,-3,\ldots\}. \end{array}$

Proposition 2.11. $A \smallsetminus (B \cup C) = (A \smallsetminus B) \cap (A \smallsetminus C)$

Proof. Let x be arbitrary. Then $x \in A \setminus (B \cup C)$ iff $x \in A$ and $x \notin B \cup C$ iff $x \in A$ and not $(x \in B \text{ or } x \in C)$ iff $x \in A$ and $(x \notin B \text{ and } x \notin C)$ iff $x \in A$ and $x \notin B$ and $x \notin C$ iff $x \in A$ and $x \notin B$ and $x \in A$ and $x \notin C$ iff $(x \in A \text{ and } x \notin B)$ and $(x \in A \text{ and } x \notin C)$ iff $x \in A \setminus B$ and $x \in A \setminus C$ iff $x \in (A \setminus B) \cap (A \setminus C)$.

Exercise 2.12. Prove that $A \smallsetminus (B \cap C) = (A \smallsetminus B) \cup (A \smallsetminus C)$.