For all proofs, follow the in-class style as closely as possible.

Exercise 1.1. Prove that union is *commutative*: $A \cup B = B \cup A$.

Exercise 1.2. Prove that intersection is associative: $A \cap (B \cap C) = (A \cap B) \cap C$.

Exercise 1.3. Prove that union *distributes* over intersection: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Exercise 1.4. Prove the second of DeMorgan's laws: $A \smallsetminus (B \cap C) = (A \smallsetminus B) \cup (A \smallsetminus C)$.

Exercise 1.5. What is the maximum possible number of sets that can be formed with the operations union, intersection, and set-theoretic difference when starting with three sets A, B, and C? Justify your answer.