3 Functions

Provisional Definition:

Let A, B be sets. Then f is a function from A to B, written $f: A \to B$, iff f assigns a unique element $f(a) \in B$ to each $a \in A$.

What is the meaning of "assigns"? To illustrate our earlier comments on set theory as a foundation for mathematics, we shall reduce the notion of a function to the language of basic set theory.

Basic idea

For example, consider $f \colon \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$. Then the graph of f is a subset of \mathbb{R}^2 . We shall identify f with its graph.

To generalize this idea to arbitrary functions, we first need to introduce the idea of an *ordered pair*; is a mathematical object $\langle a, b \rangle$ such that

(*)
$$\langle a, b \rangle = \langle c, d \rangle$$
 iff $a = c$ and $b = d$.

Definition 3.1. Let A and B be sets. Then the *Cartesian product* of A and B is the set

 $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}.$

Definition 3.2. f is a function from A to B iff the following conditions hold:

1.
$$f \subseteq A \times B$$

2. For each $a \in A$, there is a unique $b \in B$ such that $\langle a, b \rangle \in f$.

In this case, the unique such b is said to be the value of f at a and we write f(a) = b.

In order to reduce the notion of a function to basic set theory, we now only need to find a purely set theoretic object to play the role of $\langle x, y \rangle$.

Definition 3.3. $\langle x, y \rangle = \{\{x\}, \{x, y\}\}.$

Finally, we must prove that with this definition, the set $\langle x, y \rangle$ satisfies (*).

Theorem 3.4. $\langle a, b \rangle = \langle c, d \rangle$ iff a = c and b = d.

Proof. (\Leftarrow): Clearly if a = c and b = d then $\langle a, b \rangle = \langle c, d \rangle$. (\Rightarrow): Conversely, suppose that $\langle a, b \rangle = \langle c, d \rangle$; ie $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}.$

We split our analysis into three cases.

Case 1

Suppose that a = b. Then $\{\{a\}, \{a, b\}\}$ equals

$$= \{\{a\}, \{a, a\}\} \\= \{\{a\}, \{a\}\} \\= \{\{a\}\}$$

Since

 $\{\{c\}, \{c, d\}\} = \{\{a\}\}\$

it follows that

 $\{c\} = \{c, d\} = \{a\}.$ This implies that c = d = a. Hence a = c and b = d.

Case 2

Similarly, if c = d, we obtain that a = c and b = d.

Case 3

Finally suppose that $a \neq b$ and $c \neq d$. Since

 $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}\$

we must have that $\{a\} = \{c\}$ or $\{a\} = \{c, d\}$. Since $c \neq d$ the second option is impossible. Hence $\{a\} = \{c\}$ and so a = c.

Also $\{a, b\} = \{c\}$ or $\{a, b\} = \{c, d\}$. Clearly the first option is impossible and so $\{a, b\} = \{c, d\}$. Since a = c, we must have b = d.

Important remark When working with functions, it is almost never necessary to remember that a function is literally a set of ordered pair as above.

Definition 3.5. The function $f: A \to B$ is an *injection* (one-to-one) iff $a \neq a'$ implies $f(a) \neq f(a')$.

Definition 3.6. The function $f: A \to B$ is a surjection (onto) iff for all $b \in B$, there exists an $a \in A$ such that f(a) = b.

Definition 3.7. If $f: A \to B$ and $g: B \to C$ are functions, then their *composition* is the function $g \circ f: A \to C$ defined by $(g \circ f)(a) = g(f(a))$.

Proposition 3.8. If $f: A \to B$ and $g: B \to C$ are surjections then $g \circ f: A \to C$ is also a surjection.

Proof. Let $c \in C$ be arbitrary. Since g is surjective, there exists a $b \in B$ such that g(b) = c. Since f is surjective, there exists $a \in A$ such that f(a) = b. Hence $(g \circ f)(a) = g(f(a)) = g(b) = c$

Thus $g \circ f$ is surjective.

Exercise 3.9. If $f: A \to B$ and $g: B \to C$ are injections then $g \circ f: A \to C$ is also an injection.

2006/01/23

Definition 3.10. The function $f: A \to B$ is a *bijection* iff f is both an injection and a surjection.

Definition 3.11. If $f: A \to B$ is a bijection, then the *inverse* $f^{-1}: B \to A$ is the function defined by

 $f^{-1}(b)$ = the unique $a \in A$ so that f(a) = b.

Remark 3.12. 1. It is easily checked that $f^{-1}: B \to A$ is also a bijection.

2. In terms of ordered pairs:

 $f^{-1} = \{ \langle b, a \rangle \mid \langle a, b \rangle \in f \}.$

4 Equinumerosity

Definition 4.1. Two sets A and B are equinumerous, written $A \sim B$, iff there exists a bijection $f: A \to B$.

Example 4.2. Let $\mathbb{E} = \{0, 2, 4, \ldots\}$ be the set of even natural numbers. Then $\mathbb{N} \sim \mathbb{E}$.

Proof. We can define a bijection $f \colon \mathbb{N} \to \mathbb{E}$ by f(n) = 2n.

Important remark It is often extremely hard to explicitly define a bijection $f: \mathbb{N} \to A$. But suppose such a bijection exists. Then letting $a_n = f(n)$, we obtain a *list* of the elements of A

```
a_0, a_1, a_2, \ldots, a_n, \ldots
```

in which each element of A appears exactly once. Conversely, if such a list exists, then we can define a bijection $f: \mathbb{N} \to A$ by $f(n) = a_n$.

Example 4.3. $\mathbb{N} \sim \mathbb{Z}$

Proof. We can list the elements of \mathbb{Z} by $0, 1, -1, 2, -1, \dots, n, -n, \dots$

Theorem 4.4. $\mathbb{N} \sim \mathbb{Q}$

Proof. Step 1 First we prove that $\mathbb{N} \sim \mathbb{Q}^+$, the set of positive rational numbers. Form an infinite matrix where the $(i, j)^{\text{th}}$ entry is j/i.

Proceed through the matrix by traversing, alternating between upward and downward, along lines of slope one. At the (i, j)th entry add the number j/i to the list if it has not already appeared.

Step 2 We have shown that there exists a bijection $f \colon \mathbb{N} \to \mathbb{Q}^+$. Hence we can list the elements of \mathbb{Q} by

$$0, f(0), -f(0), f(1), -f(1), \dots$$

2006/01/23

Definition 4.5. If A is any set, then its *powerset* is defined to be $\mathcal{P}(A) = \{B \mid B \subseteq A\}.$

Example 4.6. 1. $\mathcal{P}(\{1,2\} = \{\emptyset, \{1\}, \{2\}, \{1,2\}.$

2. $\mathcal{P}(\{1, 2, ..., n, \}$ has size 2^n .

Theorem 4.7. (Cantor) $\mathbb{N} \nsim \mathcal{P}(\mathbb{N})$

Proof. (The diagonal argument) We must show that there does *not* exist a bijection $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$. So let $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ be any function. We shall show that f isn't a surjection. To accomplish this we shall define a subset $S \subseteq \mathbb{N}$ such that $f(n) \neq S$ for all $n \in \mathbb{N}$. We do this via a "time and motion study". For each $n \in \mathbb{N}$, we must perform:

- 1. the n^{th} decision: is $n \in S$?
- 2. the n^{th} task: we must ensure that $f(n) \neq S$.

We decide to accomplish the n^{th} task with the n^{th} decision. So we decide that $n \in S$ iff $n \notin f(n)$.

Clearly S and f(n) differ on whether they contain n and so $f(n) \neq S$. Hence f is not a surjection.

Discussion Why is this called the "diagonal argument"?

Definition 4.8. A set A is *countable* iff A is finite or $\mathbb{N} \sim A$. Otherwise A is *uncountable*.

eg \mathbb{Q} is countable $\mathcal{P}(\mathbb{N})$ is uncounable.

Theorem 4.9. (Cantor) If A is any set, then $A \nsim \mathcal{P}(A)$.

Proof. Suppose that $f: A \to \mathcal{P}(A)$ is any function. We shall show that f isn't a surjection. Define $S \subseteq A$ by

 $a \in S$ iff $a \notin f(a)$.

Then S and f(a) differ on whether they contain a. Thus $f(a) \neq S$ for all $a \in A$.

Definition 4.10. Let A, B be sets.

1. $A \leq B$ iff there exists an injection $f: A \rightarrow B$.

2. $A \prec B$ iff $A \preceq B$ and $A \nsim B$.

Corollary 4.11. If A is any set, then $A \prec \mathcal{P}(A)$.

Proof. Define $f: A \to \mathcal{P}(A)$ by $f(a) = \{a\}$. Clearly f is an injection and so $A \preceq \mathcal{P}(A)$. Since $A \nsim \mathcal{P}(A)$, we have $A \prec \mathcal{P}(A)$.

Corollary 4.12. $\mathbb{N} \prec \mathcal{P}(\mathbb{N}) \prec \mathcal{P}(\mathcal{P}(\mathbb{N})) \prec \ldots$

Having seen that we have a nontrivial subject, we now try to develop some general theory.

2006/01/23

5 Cantor-Bernstein Theorem

Theorem 5.1. Let A, B, C be sets.

- 1. $A \sim A$
- 2. If $A \sim B$, then $B \sim A$.
- 3. If $A \sim B$ and $B \sim C$, then $A \sim C$.

Exercise 5.2. If $A \leq B$ and $B \leq C$, then $A \leq C$.

Theorem 5.3. (Cantor-Bernstein) If $A \leq B$ and $B \leq A$, then $A \sim B$.

Proof delayed

Theorem 5.4. If A, B are any sets, then either $A \leq B$ or $B \leq A$.

Proof omitted

This theorem is equivalent to:

Axiom of Choice If \mathcal{F} is a family of nonempty sets then there exists a function f such that $f(A) \in A$ for all $A \in \mathcal{F}$. (Such a function is called a *choice function*.)