
Math 461 Functions. Equinumerosity. Statement of Cantor-Bernstein

3 Functions

Provisional Definition:
Let A, B be sets. Then f is a function from A to B, written f : A→ B, iff f assigns

a unique element f(a) ∈ B to each a ∈ A.
What is the meaning of “assigns”? To illustrate our earlier comments on set theory

as a foundation for mathematics, we shall reduce the notion of a function to the language
of basic set theory.

Basic idea
For example, consider f : R → R defined by f(x) = x2. Then the graph of f is a

subset of R2. We shall identify f with its graph.
To generalize this idea to arbitrary functions, we first need to introduce the idea of

an ordered pair; ie a mathematical object 〈a, b〉 such that
(∗) 〈a, b〉 = 〈c, d〉 iff a = c and b = d.

Definition 3.1. Let A and B be sets. Then the Cartesian product of A and B is the
set

A×B = {〈a, b〉 | a ∈ A, b ∈ B}.

Definition 3.2. f is a function from A to B iff the following conditions hold:

1. f ⊆ A×B

2. For each a ∈ A, there is a unique b ∈ B such that 〈a, b〉 ∈ f .

In this case, the unique such b is said to be the value of f at a and we write f(a) = b.

In order to reduce the notion of a function to basic set theory, we now only need to
find a purely set theoretic object to play the role of 〈x, y〉.

Definition 3.3. 〈x, y〉 = {{x}, {x, y}}.

Finally, we must prove that with this definition, the set 〈x, y〉 satisfies (∗).

Theorem 3.4. 〈a, b〉 = 〈c, d〉 iff a = c and b = d.

Proof. (⇐): Clearly if a = c and b = d then 〈a, b〉 = 〈c, d〉.
(⇒): Conversely, suppose that 〈a, b〉 = 〈c, d〉; ie

{{a}, {a, b}} = {{c}, {c, d}}.
We split our analysis into three cases.

Case 1
Suppose that a = b. Then {{a}, {a, b}} equals
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= {{a}, {a, a}}
= {{a}, {a}}
= {{a}}

Since
{{c}, {c, d}} = {{a}}

it follows that
{c} = {c, d} = {a}.

This implies that c = d = a. Hence a = c and b = d.

Case 2
Similarly, if c = d, we obtain that a = c and b = d.

Case 3
Finally suppose that a 6= b and c 6= d. Since

{{a}, {a, b}} = {{c}, {c, d}}
we must have that {a} = {c} or {a} = {c, d}. Since c 6= d the second option is
impossible. Hence {a} = {c} and so a = c.

Also {a, b} = {c} or {a, b} = {c, d}. Clearly the first option is impossible and so
{a, b} = {c, d}. Since a = c, we must have b = d.

Important remark When working with functions, it is almost never necessary to
remember that a function is literally a set of ordered pair as above.

Definition 3.5. The function f : A→ B is an injection (one-to-one) iff
a 6= a′ implies f(a) 6= f(a′).

Definition 3.6. The function f : A → B is a surjection (onto) iff for all b ∈ B, there
exists an a ∈ A such that f(a) = b.

Definition 3.7. If f : A → B and g : B → C are functions, then their composition is
the function g ◦ f : A→ C defined by (g ◦ f)(a) = g(f(a)).

Proposition 3.8. If f : A → B and g : B → C are surjections then g ◦ f : A → C is
also a surjection.

Proof. Let c ∈ C be arbitrary. Since g is surjective, there exists a b ∈ B such that
g(b) = c. Since f is surjective, there exists a ∈ A such that f(a) = b. Hence (g ◦f)(a) =

= g(f(a))
= g(b)
= c

Thus g ◦ f is surjective.

Exercise 3.9. If f : A→ B and g : B → C are injections then g ◦ f : A→ C is also an
injection.

2006/01/23 2



Math 461 Functions. Equinumerosity. Statement of Cantor-Bernstein

Definition 3.10. The function f : A→ B is a bijection iff f is both an injection and a
surjection.

Definition 3.11. If f : A → B is a bijection, then the inverse f−1 : B → A is the
function defined by

f−1(b) = the unique a ∈ A so that f(a) = b.

Remark 3.12. 1. It is easily checked that f−1 : B → A is also a bijection.

2. In terms of ordered pairs:

f−1 = {〈b, a〉 | 〈a, b〉 ∈ f}.

4 Equinumerosity

Definition 4.1. Two sets A and B are equinumerous, written A ∼ B, iff there exists a
bijection f : A→ B.

Example 4.2. Let E = {0, 2, 4, . . .} be the set of even natural numbers. Then N ∼ E.

Proof. We can define a bijection f : N→ E by f(n) = 2n.

Important remark It is often extremely hard to explicitly define a bijection f : N→ A.
But suppose such a bijection exists. Then letting an = f(n), we obtain a list of the
elements of A

a0, a1, a2, . . . , an, . . .
in which each element of A appears exactly once. Conversely, if such a list exists, then
we can define a bijection f : N→ A by f(n) = an.

Example 4.3. N ∼ Z
Proof. We can list the elements of Z by

0, 1,−1, 2,−1, . . . , n,−n, . . .
Theorem 4.4. N ∼ Q
Proof. Step 1 First we prove that N ∼ Q+, the set of positive rational numbers. Form
an infinite matrix where the (i, j)th entry is j/i.

Proceed through the matrix by traversing, alternating between upward and down-
ward, along lines of slope one. At the (i, j)th entry add the number j/i to the list if it
has not already appeared.

Step 2 We have shown that there exists a bijection f : N→ Q+. Hence we can list the
elements of Q by

0, f(0),−f(0), f(1),−f(1), . . .
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Definition 4.5. If A is any set, then its powerset is defined to be
P(A) = {B | B ⊆ A}.

Example 4.6. 1. P({1, 2} = {∅, {1}, {2}, {1, 2}.

2. P({1, 2, . . . n, } has size 2n.

Theorem 4.7. (Cantor) N ¿ P(N)

Proof. (The diagonal argument) We must show that there does not exist a bijection
f : N → P(N). So let f : N → P(N) be any function. We shall show that f isn’t a
surjection. To accomplish this we shall define a subset S ⊆ N such that f(n) 6= S for all
n ∈ N. We do this via a “time and motion study”. For each n ∈ N, we must perform:

1. the nth decision: is n ∈ S?

2. the nth task: we must ensure that f(n) 6= S.

We decide to accomplish the nth task with the nth decision. So we decide that
n ∈ S iff n/∈f(n).

Clearly S and f(n) differ on whether they contain n and so f(n) 6= S. Hence f is not a
surjection.

Discussion Why is this called the “diagonal argument”?

Definition 4.8. A set A is countable iff A is finite or N ∼ A. Otherwise A is uncountable.

eg Q is countable
P(N) is uncounable.

Theorem 4.9. (Cantor) If A is any set, then A ¿ P(A).

Proof. Supose that f : A → P(A) is any function. We shall show that f isn’t a surjec-
tion. Define S ⊆ A by

a ∈ S iff a/∈f(a).
Then S and f(a) differ on whether they contain a. Thus f(a) 6= S for all a ∈ A.

Definition 4.10. Let A, B be sets.

1. A ¹ B iff there exists an injection f : A→ B.

2. A ≺ B iff A ¹ B and A ¿ B.

Corollary 4.11. If A is any set, then A ≺ P(A).

Proof. Define f : A→ P(A) by f(a) = {a}. Clearly f is an injection and so A ¹ P(A).
Since A ¿ P(A), we have A ≺ P(A).

Corollary 4.12. N ≺ P(N) ≺ P(P(N)) ≺ . . .

Having seen that we have a nontrivial subject, we now try to develop some general
theory.
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5 Cantor-Bernstein Theorem

Theorem 5.1. Let A, B, C be sets.

1. A ∼ A

2. If A ∼ B, then B ∼ A.

3. If A ∼ B and B ∼ C, then A ∼ C.

Exercise 5.2. If A ¹ B and B ¹ C, then A ¹ C.

Theorem 5.3. (Cantor-Bernstein) If A ¹ B and B ¹ A, then A ∼ B.

Proof delayed

Theorem 5.4. If A, B are any sets, then either A ¹ B or B ¹ A.

Proof omitted

This theorem is equivalent to:

Axiom of Choice If F is a family of nonempty sets then there exists a function f such
that f(A) ∈ A for all A ∈ F . (Such a function is called a choice function.)
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