5 The Cantor-Bernstein Theorem (continued)

Some applications of the Cantor-Bernstein theorem

Theorem 5.1. $\mathbb{N} \sim \mathbb{Q}$.

Proof. First define a function $f: \mathbb{N} \to \mathbb{Q}$ by f(n) = n. Clearly f is an injection and so $\mathbb{N} \prec \mathbb{Q}.$

Now define a function $g: \mathbb{Q} \to \mathbb{N}$ as follows. First suppose that $0 \neq q \in \mathbb{Q}$. Then we can *uniquely* express

 $q = \epsilon \frac{a}{b}$ where $\epsilon = \pm 1$ and $a, b \in \mathbb{N}$ are positive and relatively prime. Then we define $q(q) = 2^{\epsilon+1} 3^a 5^b.$

Finally define g(0) = 7. Clearly g is an injection and so $\mathbb{Q} \leq \mathbb{N}$. By Cantor-Bernstein, $\mathbb{N} \sim \mathbb{Q}$.

Theorem 5.2. $\mathbb{R} \sim \mathcal{P}(\mathbb{N})$.

We shall make use of the following result.

Lemma 5.3. $(0, 1) \sim \mathbb{R}$.

Proof of Lemma 5.3. By Calc I, we can define a bijection $f: (0,1) \to \mathbb{R}$ by f(x) = $\tan(\pi x - \pi/2).$

Proof of Theorem 5.2. By the lemma, it is enough to show that $(0,1) \sim \mathcal{P}(\mathbb{N})$. We shall make use of the fact that eact $r \in (0, 1)$ has a *unique* decimal expansion

 $r = 0.r_1 r_2 r_3 \dots r_n \dots$

so that

1. $0 \le r_n \le 9$

2. the expansion does not terminate with infinitely many 9s. (This is to avoid two expansions such as 0.5000... = 0.4999...

First we define $f: (0,1) \to \mathcal{P}(\mathbb{N})$ as follows. If

$$r = 0.r_0 r_1 r_2 \dots r_n \dots$$

then

 $f(r) = \{2^{r_0+1}, 3^{r_1+1}, \dots, p_n^{r_n+1}, \dots\}$ where p_n is the n^{th} prime. Clearly f is an injection and so $(0, 1) \leq \mathcal{P}(\mathbb{N})$.

Next we define a function
$$g: \mathcal{P}(\mathbb{N}) \to (0,1)$$
 as follows: If $\emptyset \neq S \subseteq \mathbb{N}$ then

 $q(S) = 0.s_0 s_1 s_2 \dots s_n \dots$

where

 $s_n = 0$ if $n \in S$ $s_n = 1$ if $n \notin S$. Finally, $q(\emptyset) = 0.5$. Clearly q is an injection and so $\mathcal{P}(\mathbb{N}) \preceq (0, 1)$. By Cantor-Bernstein, $(0, 1) \sim \mathcal{P}(\mathbb{N})$.

The following result says that " \mathbb{N} has the smallest infinite size."

Theorem 5.4. If $S \subseteq \mathbb{N}$, then either S is finite or $\mathbb{N} \sim S$.

Proof. Suppose that S is infinite. Let

 $s_0, s_1, s_2, \ldots, s_n, \ldots$

be the increasing enumeration of the elements of S. This list witnesses that $\mathbb{N} \sim S$.

The Continuum Hypothesis (CH) If $S \subseteq \mathbb{R}$, then either S is countable or $\mathbb{R} \sim S$.

Theorem 5.5. (Godel 1930s, Cohen 1960s) If the axioms of set theory are consistent, then CH can neither be proved nor disproved from these axioms.

Definition 5.6. Fin(\mathbb{N}) is the set of all finite subsets of \mathbb{N} .

Theorem 5.7. $\mathbb{N} \sim \operatorname{Fin}(\mathbb{N})$.

Proof. First define $f: \mathbb{N} \to \operatorname{Fin}(\mathbb{N})$ by $f(n) = \{n\}$. Clearly f is an injection and so $\mathbb{N} \preceq \operatorname{Fin}(\mathbb{N})$. Now define $g: \operatorname{Fin}(\mathbb{N}) \to \mathbb{N}$ as follows. If $s = \{s_0, s_1, s_2, \ldots, s_n\}$ where $s_0 < s_1 < \ldots < s_n$, then

 $g(S) = 2^{s_0+1}3^{s_1+1} \dots p_n^{s_n+1}$ where p_i is the *i*th prime. Also we define $g(\emptyset) = 1$. Clearly g is an injection and so $\operatorname{Fin}(\mathbb{N}) \preceq \mathbb{N}$.

By Cantor-Bernstein, $\mathbb{N} \sim \operatorname{Fin}(\mathbb{N})$.

Exercise 5.8. If a < b are reals, then $(a, b) \sim (0, 1)$.

Exercise 5.9. If a < b are reals, then $[a, b] \sim (0, 1)$.

Exercise 5.10. $\mathbb{N} \sim \mathbb{N} \times \mathbb{N}$.

Exercise 5.11. If $A \sim B$ and $C \sim D$, then $A \times C \sim B \times D$.

Definition 5.12. If A and B are sets, then $B^{A} = \{f \mid f : A \to B\}.$

Theorem 5.13. $\mathcal{P}(\mathbb{N}) \sim \mathbb{N}^{\mathbb{N}}$.

Proof. For each $S \subseteq \mathbb{N}$ we define the corresponding characteristic function $\chi_S \colon \mathbb{N} \to \{0,1\}$ by

 $\chi_S(n) = 1$ if $n \in S$ $\chi_S(n) = 0$ if $n \notin S$

Let $f: \mathcal{P}(\mathbb{N}) \to \mathbb{N}^{\mathbb{N}}$ be the function defined by $f(S) = \chi_S$. Clearly f is an injection and so $\mathcal{P}(\mathbb{N}) \preceq \mathbb{N}^{\mathbb{N}}$.

Now we define a function
$$g: \mathbb{N}^{\mathbb{N}} \to \mathcal{P}(\mathbb{N})$$
 by
 $g(\pi) = \{2^{\pi(0)+1}, 3^{\pi(1)+1}, \dots, p_n^{\pi(n)+1}, \dots\}$

2006/01/30

where p_n is the n^{th} prime. Clearly g is an injection. Hence $\mathbb{N}^{\mathbb{N}} \preceq \mathcal{P}(\mathbb{N})$. By Cantor-Bernstein, $\mathcal{P}(\mathbb{N}) \sim \mathbb{N}^{\mathbb{N}}$.

Heuristic Principle Let S be an infinite set.

- 1. If each $s \in S$ is determined by a *finite* amount of data, then S is countable.
- 2. If each $s \in S$ is determined by *infinitely many independent* pieces of data, then S is uncountable.

Definition 5.14. A function $f : \mathbb{N} \to \mathbb{N}$ is *eventually constant* iff there exists $a, b \in \mathbb{N}$ such that

f(n) = b for all $n \ge a$.

 $\mathrm{EC}(\mathbb{N}) = \{ f \in \mathbb{N}^{\mathbb{N}} \mid f \text{ is eventually constant } \}.$

Theorem 5.15. $\mathbb{N} \sim \mathrm{EC}(\mathbb{N})$.

Proof. For each $n \in \mathbb{N}$, let $c_n \colon \mathbb{N} \to \mathbb{N}$ be the function defined by $c_n(t) = n$ for all $t \in \mathbb{N}$.

Then we can define an injection $f: \mathbb{N} \to \mathrm{EC}(\mathbb{N})$ by $f(n) = c_n$. Hence $\mathbb{N} \preceq \mathrm{EC}(\mathbb{N})$.

Next we define a function $g \colon \mathrm{EC}(\mathbb{N}) \to \mathbb{N}$ as follows. Let $\pi \in \mathrm{EC}(\mathbb{N})$. Let $a, b \in \mathbb{N}$ be chosen so that:

1. $\pi(n) = b$ for all $n \ge a$

2. a is the least such integer.

Then

 $q(\pi) = 2^{\pi(0)+1} 3^{\pi(1)+1} \dots p_a^{\pi(a)+1}$

where p_i is the *i*th prime. Clearly g is an injection. Thus $EC(\mathbb{N}) \leq \mathbb{N}$.

By Cantor-Bernstein, $\mathbb{N} \sim \mathrm{EC}(\mathbb{N})$.

6 The proof of Cantor-Berstein

Next we turn to the proof of the Cantor-Bernstein Theorem. We shall make use of the following result.

Definition 6.1. If $f: A \to B$ and $C \subseteq A$, then $f[C] = \{f(c) \mid c \in C\}.$

Lemma 6.2. If $f: A \to B$ is an injection and $C \subseteq A$, then $f[A \smallsetminus C] = f[A] \smallsetminus f[C]$.

Proof. Suppose that $x \in f[A \setminus C]$. Then there exists $a \in A \setminus C$ such that f(a) = x. In particular $x \in f[A]$. Suppose that $x \in f[C]$. Then there exists $c \in C$ such that f(c) = x. But $a \neq c$ and so this contradicts the fact that f is an injection. Hence $x \notin f[C]$ and so $x \in f[A] \setminus f[C]$.

Conversely suppose that $x \in f[A] \setminus f[C]$. Since $x \in f[A]$, there exists $a \in A$ such that f(a) = x. Since $x \notin f[C]$, it follows that $a \notin C$. Thus $a \in A \setminus C$ and $x = f(a) \in f[A \setminus C]$.

Theorem 6.3. (Cantor-Bernstein) If $A \leq B$ and $B \leq A$, then $A \sim B$.

Proof. Since $A \leq B$ and $B \leq A$, there exists injections $f: A \to B$ and $g: B \to A$. Let $C = g[B] = \{g(b) \mid b \in B\}.$

Claim 6.4. $B \sim C$.

Proof of Claim 6.4. The map $b \mapsto g(b)$ is a bijection from B to C.

Thus it is enough to prove that $A \sim C$. For then, $A \sim C$ and $C \sim B$, which implies that $A \sim B$.

Let $h = g \circ f \colon A \to C$. Then h is an injection.

Define by induction on $n \ge 0$.

 $A_0 = A \qquad C_0 = C$ $A_{n+1} = h[A_n] \qquad C_{n+1} = h[C_n]$ Define $k: A \to C$ by k(x) = = h(x) if $x \in A_n \smallsetminus C_n$ for some n = x otherwise

Claim 6.5. k is an injection.

Proof of Claim 6.5. Suppose that $x \neq x'$ are distinct elements of A. We consider three cases.

Case 1:

Suppose that $x \in A_n \setminus C_n$ and $x' \in A_m \setminus C_m$ for some n, m. Since h is an injection, $k(x) = h(x) = x \neq x' = h(x) = k(x).$

Case 2:

Suppose that $x \notin A_n \smallsetminus C_n$ for all n and that $x' \notin A_n \smallsetminus C_n$ for all n. Then $k(x) = x \neq x' = k(x)$.

Case 3:

Suppose that $x \in A_n \smallsetminus C_n$ and $x' \notin A_m \smallsetminus C_m$ for all m. Then $k(x) = h(x) \in h[A_n \smallsetminus C_n]$

and

$$h[A_n \smallsetminus C_n] = h[A_n] \diagdown h[C_n] = A_{n+1} \smallsetminus C_{n+1}.$$

Hence $k(x) = h(x) \neq x' = k(x')$.

Claim 6.6. k is a surjection.

Proof of Claim 6.6. Let $x \in C$. There are two cases to consider.

Case 1:

Suppose that $x \notin A_n \setminus C_n$ for all *n*. Then k(x) = x.

Case 2:

Suppose that $x \in A_n \setminus C_n$. Since $x \in C$, we must have that n = m + 1 for some m. Since

 $h[A_m \smallsetminus C_m] = A_n \smallsetminus C_n,$ there exists $y \in A_m \smallsetminus C_m$ such that k(y) = h(y) = x.

This completes the proof of the Cantor-Bernstein Theorem.

Theorem 6.7. $\mathbb{R} \sim \mathbb{R} \times \mathbb{R}$

Proof. Since $(0,1) \sim \mathbb{R}$, it follows that $(0,1) \times (0,1) \sim \mathbb{R} \times \mathbb{R}$. Hence it is enough to prove that $(0,1) \sim (0,1) \times (0,1)$.

First define $f: (0,1) \to (0,1) \times (0,1)$ by $f(r) = \langle r, r \rangle$. Clearly f is an injection and so $(0,1) \preceq (0,1) \times (0,1)$.

Next define $g: (0,1) \times (0,1) \to (0,1)$ as follows. Suppose that $r, s \in (0,1)$ have decimal expansions

 $r = 0.r_0 r_1 \dots r_n \dots$ $s = 0.s_0 s_1 \dots s_n \dots$

Then

 $g(\langle r, s \rangle) = 0.r_0 s_0 r_1 s_1 \dots r_n s_n \dots$ Clearly g is an injection and so $(0, 1) \times (0, 1) \preceq (0, 1)$. By Cantor-Bernstein, $(0, 1) \sim (0, 1) \times (0, 1)$.

Exercise 6.8. $\mathbb{R} \setminus \mathbb{N} \sim \mathbb{R}$

Exercise 6.9. $\mathbb{R} \setminus \mathbb{Q} \sim \mathbb{R}$

Exercise 6.10. Let $\operatorname{Sym}(\mathbb{N}) = \{ f \mid f : \mathbb{N} \to \mathbb{N} \text{ is a bijection } \}$. Prove that $\mathcal{P}(\mathbb{N}) \sim \operatorname{Sym}(\mathbb{N})$.

Definition 6.11. Let A be any set. Then a *finite sequence* of elements of A is an object $\langle a_0, a_1, \ldots, a_n \rangle, n \ge 0$ so that each $a_i \in A$, chosen so that

 $\langle a_0, a_1, \dots, a_n \rangle = \langle b_0, b_1, \dots, b_n \rangle$ iff n = m and $a_i = b_i$ for $0 \le i \le n$.

 $\operatorname{FinSeq}(A)$ is the set of all finite sequences of elements of A.

Theorem 6.12. If A is a nonempty countable set, then $\mathbb{N} \sim \operatorname{FinSeq}(A)$.

Proof. First we prove that $\mathbb{N} \preceq \operatorname{FinSeq}(A)$. Fix some $a \in A$. Then we define $f \colon \mathbb{N} \to A$ $\operatorname{FinSeq}(A)$ by

$$f(n) = \langle \underline{a, a, a, a, a, \dots, a} \rangle.$$

n+1 times Clearly f is an injection and so $\mathbb{N} \preceq \operatorname{FinSeq}(A)$.

Next we prove that $\operatorname{FinSeq}(A) \preceq \mathbb{N}$. Since A is countable, there exists an injection $e\colon A\to\mathbb{N}.$ Define $g\colon\mathrm{FinSeq}(A)\to\mathbb{N}$ by

where p_i is the n^{th} prime. Clearly g is an injection. Hence $\operatorname{FinSeq}(A) \preceq \mathbb{N}$.

By Cantor-Bernstein, $\mathbb{N} \sim \operatorname{FinSeq}(A)$.