
Math 461 Cantor-Bernstein

5 The Cantor-Bernstein Theorem (continued)

Some applications of the Cantor-Bernstein theorem

Theorem 5.1. N ∼ Q.

Proof. First define a function f : N → Q by f(n) = n. Clearly f is an injection and so
N ¹ Q.

Now define a function g : Q→ N as follows. First suppose that 0 6= q ∈ Q. Then we
can uniquely express

q = εa
b

where ε = ±1 and a, b ∈ N are positive and relatively prime. Then we define
g(q) = 2ε+13a5b.

Finally define g(0) = 7. Clearly g is an injection and so Q ¹ N.
By Cantor-Bernstein, N ∼ Q.

Theorem 5.2. R ∼ P(N).

We shall make use of the following result.

Lemma 5.3. (0, 1) ∼ R.

Proof of Lemma 5.3. By Calc I, we can define a bijection f : (0, 1) → R by f(x) =
tan(πx− π/2).

Proof of Theorem 5.2. By the lemma, it is enough to show that (0, 1) ∼ P(N). We shall
make use of the fact that eact r ∈ (0, 1) has a unique decimal expansion

r = 0.r1r2r3 . . . rn . . .
so that

1. 0 ≤ rn ≤ 9

2. the expansion does not terminate with infinitely many 9s. (This is to avoid two
expansions such as 0.5000 . . . = 0.4999 . . .)

First we define f : (0, 1)→ P(N) as follows. If
r = 0.r0r1r2 . . . rn . . .

then
f(r) = {2r0+1, 3r1+1, . . . , prn+1

n , . . .}
where pn is the nth prime. Clearly f is an injection and so (0, 1) ¹ P(N).

Next we define a function g : P(N)→ (0, 1) as follows: If ∅ 6= S ⊆ N then
g(S) = 0.s0s1s2 . . . sn . . .

where
sn = 0 if n ∈ S
sn = 1 if n /∈ S.

Finally, g(∅) = 0.5. Clearly g is an injection and so P(N) ¹ (0, 1).
By Cantor-Bernstein, (0, 1) ∼ P(N).
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The following result says that “N has the smallest infinite size.”

Theorem 5.4. If S ⊆ N, then either S is finite or N ∼ S.

Proof. Suppose that S is infinite. Let
s0, s1, s2, . . . , sn, . . .

be the increasing enumeration of the elements of S. This list witnesses that N ∼ S.

The Continuum Hypothesis (CH) If S ⊆ R, then either S is countable or R ∼ S.

Theorem 5.5. (Godel 1930s, Cohen 1960s) If the axioms of set theory are consistent,
then CH can neither be proved nor disproved from these axioms.

Definition 5.6. Fin(N) is the set of all finite subsets of N.

Theorem 5.7. N ∼ Fin(N).

Proof. First define f : N → Fin(N) by f(n) = {n}. Clearly f is an injection and so
N ¹ Fin(N). Now define g : Fin(N) → N as follows. If s = {s0, s1, s2, . . . , sn} where
s0 < s1 < . . . < sn, then

g(S) = 2s0+13s1+1 . . . psn+1
n

where pi is the ith prime. Also we define g(∅) = 1. Clearly g is an injection and so
Fin(N) ¹ N.

By Cantor-Bernstein, N ∼ Fin(N).

Exercise 5.8. If a < b are reals, then (a, b) ∼ (0, 1).

Exercise 5.9. If a < b are reals, then [a, b] ∼ (0, 1).

Exercise 5.10. N ∼ N×N.

Exercise 5.11. If A ∼ B and C ∼ D, then A×C ∼ B×D.

Definition 5.12. If A and B are sets, then
BA = {f | f : A→ B}.

Theorem 5.13. P(N) ∼ NN.

Proof. For each S ⊆ N we define the corresponding characteristic function χS : N →
{0, 1} by

χS(n) = 1 if n ∈ S
χS(n) = 0 if n/∈S

Let f : P(N)→ NN be the function defined by f(S) = χS. Clearly f is an injection and
so P(N) ¹ NN.

Now we define a function g : NN → P(N) by

g(π) = {2π(0)+1, 3π(1)+1, . . . , p
π(n)+1
n , . . .}
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where pn is the nth prime. Clearly g is an injection. Hence NN ¹ P(N).
By Cantor-Bernstein, P(N) ∼ NN.

Heuristic Principle Let S be an infinite set.

1. If each s ∈ S is determined by a finite amount of data, then S is countable.

2. If each s ∈ S is determined by infinitely many independent pieces of data, then S
is uncountable.

Definition 5.14. A function f : N → N is eventually constant iff there exists a, b ∈ N
such that

f(n) = b for all n ≥ a.

EC(N) = {f ∈ NN | f is eventually constant }.

Theorem 5.15. N ∼ EC(N).

Proof. For each n ∈ N, let cn : N→ N be the function defined by
cn(t) = n for all t ∈ N.

Then we can define an injection f : N→ EC(N) by f(n) = cn. Hence N ¹ EC(N).
Next we define a function g : EC(N) → N as follows. Let π ∈ EC(N). Let a, b ∈ N

be chosen so that:

1. π(n) = b for all n ≥ a

2. a is the least such integer.

Then
g(π) = 2π(0)+13π(1)+1 . . . p

π(a)+1
a

where pi is the ith prime. Clearly g is an injection. Thus EC(N) ¹ N.
By Cantor-Bernstein, N ∼ EC(N).

6 The proof of Cantor-Berstein

Next we turn to the proof of the Cantor-Bernstein Theorem. We shall make use of the
following result.

Definition 6.1. If f : A→ B and C ⊆ A, then
f [C] = {f(c) | c ∈ C}.

Lemma 6.2. If f : A→ B is an injection and C ⊆ A, then
f [ArC] = f [A]rf [C].
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Proof. Suppose that x ∈ f [ArC]. Then there exists a ∈ ArC such that f(a) = x. In
particular x ∈ f [A]. Suppose that x ∈ f [C]. Then there exists c ∈ C such that f(c) = x.
But a 6= c and so this contradicts the fact that f is an injection. Hence x/∈f [C] and so
x ∈ f [A]rf [C].

Conversely suppose that x ∈ f [A]rf [C]. Since x ∈ f [A], there exists a ∈ A such
that f(a) = x. Since x/∈f [C], it follows that a/∈C. Thus a ∈ ArC and x = f(a) ∈
f [ArC].

Theorem 6.3. (Cantor-Bernstein) If A ¹ B and B ¹ A, then A ∼ B.

Proof. Since A ¹ B and B ¹ A, there exists injections f : A → B and g : B → A. Let
C = g[B] = {g(b) | b ∈ B}.
Claim 6.4. B ∼ C.

Proof of Claim 6.4. The map b 7→ g(b) is a bijection from B to C.

Thus it is enough to prove that A ∼ C. For then, A ∼ C and C ∼ B, which implies
that A ∼ B.

Let h = g ◦ f : A→ C. Then h is an injection.
Define by induction on n ≥ 0.

A0 = A C0 = C
An+1 = h[An] Cn+1 = h[Cn]

Define k : A→ C by k(x) =
= h(x) if x ∈ AnrCn for some n
= x otherwise

Claim 6.5. k is an injection.

Proof of Claim 6.5. Suppose that x 6= x′ are distinct elements of A. We consider three
cases.

Case 1:
Suppose that x ∈ AnrCn and x′ ∈ AmrCm for some n,m. Since h is an injection,

k(x) = h(x) = x 6= x′ = h(x) = k(x).

Case 2:
Suppose that x/∈AnrCn for all n and that x′ /∈AnrCn for all n. Then

k(x) = x 6= x′ = k(x).

Case 3:
Suppose that x ∈ AnrCn and x′ /∈AmrCm for all m. Then

k(x) = h(x) ∈ h[AnrCn]
and

h[AnrCn] = h[An]rh[Cn] = An+1rCn+1.
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Hence k(x) = h(x) 6= x′ = k(x′).

Claim 6.6. k is a surjection.

Proof of Claim 6.6. Let x ∈ C. There are two cases to consider.

Case 1:
Suppose that x/∈AnrCn for all n. Then k(x) = x.

Case 2:
Suppose that x ∈ AnrCn. Since x ∈ C, we must have that n = m + 1 for some m.

Since
h[AmrCm] = AnrCn,

there exists y ∈ AmrCm such that k(y) = h(y) = x.

This completes the proof of the Cantor-Bernstein Theorem.

Theorem 6.7. R ∼ R×R
Proof. Since (0, 1) ∼ R, it follows that (0, 1)×(0, 1) ∼ R×R. Hence it is enough to prove
that (0, 1) ∼ (0, 1)×(0, 1).

First define f : (0, 1) → (0, 1)×(0, 1) by f(r) = 〈r, r〉. Clearly f is an injection and
so (0, 1) ¹ (0, 1)×(0, 1).

Next define g : (0, 1)×(0, 1) → (0, 1) as follows. Suppose that r, s ∈ (0, 1) have
decimal expansions

r = 0.r0r1 . . . rn . . .
s = 0.s0s1 . . . sn . . .

Then
g(〈r, s〉) = 0.r0s0r1s1 . . . rnsn . . .

Clearly g is an injection and so (0, 1)×(0, 1) ¹ (0, 1).
By Cantor-Bernstein, (0, 1) ∼ (0, 1)×(0, 1).

Exercise 6.8. RrN ∼ R
Exercise 6.9. RrQ ∼ R
Exercise 6.10. Let Sym(N) = {f | f : N → N is a bijection }. Prove that P(N) ∼
Sym(N).

Definition 6.11. Let A be any set. Then a finite sequence of elements of A is an object
〈a0, a1, . . . , an〉, n ≥ 0

so that each ai ∈ A, chosen so that
〈a0, a1, . . . , an〉 = 〈b0, b1, . . . , bn〉

iff n = m and ai = bi for 0 ≤ i ≤ n.

FinSeq(A) is the set of all finite sequences of elements of A.
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Theorem 6.12. If A is a nonempty countable set, then N ∼ FinSeq(A).

Proof. First we prove that N ¹ FinSeq(A). Fix some a ∈ A. Then we define f : N →
FinSeq(A) by

f(n) = 〈a, a, a, a, a, . . . , a︸ ︷︷ ︸
n+ 1 times

〉.

Clearly f is an injection and so N ¹ FinSeq(A).
Next we prove that FinSeq(A) ¹ N. Since A is countable, there exists an injection

e : A→ N. Define g : FinSeq(A)→ N by

g(〈a0, a1, . . . , an〉) = 2e(a0)+1 . . . p
e(an)+1
n

where pi is the nth prime. Clearly g is an injection. Hence FinSeq(A) ¹ N.
By Cantor-Bernstein, N ∼ FinSeq(A).
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