Math 461 Relations and Orders

7 Binary relations

Definition 7.1. A binary relation on a set A is a subset R C AxA. We usually write
aRb instead of writing (a,b) € R.

Example 7.2. 1. The order relation on N is given by
{{(n,m) |n,m e N, n<m}.

2. The division relation D on Nx\{0} is given by
D = {(n,m) | n,m € N, n divides m}.

Observation Thus P(NxN) is the collection of all binary relations on N. Clearly
P(NxN) ~ P(N) and so P(NxN) is uncountable.

Definition 7.3. Let R be a binary relation on A.
1. R is reflexive iff xRx for all x € A.
2. R is symmetric iff x Ry implies yRx for all x,y € A.
3. R is transitive iff xRy and yRz implies xRz for all x,y, z € A.
R is an equivalence relation iff R is reflexive, symmetric, and transitive.

Example 7.4. Define the relation R on Z by
aRb iff 3|a — 0.

Proposition 7.5. R is an equivalence relation.

Exercise 7.6. Let A = {(a,b) |a,b € Z, b # 0}. Define the relation S on A by
(a,b)S{c,d) iff ad — be = 0.
Prove that S is an equivalence relation.

Definition 7.7. Let R be an equivalence relation on A. For each x € A, the equivalence
class of x is

(2] ={y € A| 2Ry}

Example 7.4 Cont. The distinct equivalence classes are
0j={...,-6,-3,0,3,6,...}
n=A{..,-5-2,147...}

2] ={...,—4,-1,2,5,8,...}

Definition 7.8. Let A be a nonempty set. Then {B; |i € I} is a partition of A iff the
following conditions hold:
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1. 0 # B;foralli € I.

2. Ifi#j €I, then BN B; =.

3. A=, Bi
Theorem 7.9. Let R be an equivalence relation on A.

1. If a € A then a € [a].

2. If a,b € A and [a] N [b] # O, then [a] = [b].
Hence the set of distinct equivalence classes forms a partition of A.
Proof. 1. Let a € A. Since R is reflexive, aRa and so a € [al.

2. Suppose that ¢ € [a]N[b]. Then aRc and bRc. Since R is symmetric, cRb. Since R
is transitive, aRb. We claim that [b] C [a]. To see this, suppose that d € [b]. Then
bRd. Since aRb and bRd, it follows that aRd. Thus d € [a]. Similarly, [a] C [b]
and so [a] = [b].

O
Theorem 7.10. Let {B;|i € I} be a partition of A. Define a binary relation R on A
by
aRb iff there exists © € I such that a,b € B;.
Then R is an equivalence relation whose equivalence classes are precisely {B; | i €
I}. Wl

Example 7.11. How many equivalence relations can be defined on A = {1,2,3}7

Sol’n This is the same as asking how many partitions of A exist.
{{1,2,3}},
{{1, 21 {301 ({1, 3 {23}, {{2, 3}, {1} },
{{1}. {2}, {3}}

Hence there are 5 equivalence relations on {1,2,3}.

Exercise 7.12. How many equivalence relations can be defined on A = {1,2,3,4}7

Challenge Let EQ(N) be the collection of equivalence relations on N. Prove that
EQ(N) ~ P(N).
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8 Linear orders

Definition 8.1. Let R be a binary relation on A.
1. R is irreflexive iff (a,a)¢R for all a € A.

2. R satisfies the trichotomy property iff for all a,b € A, exactly one of the following
holds:

aRb, a = b, bRa.

(A, R) is a linear order iff R is irreflexive, transitive, and satisfies the trichotomy prop-
erty.

Example 8.2. Each of the following are linear orders.
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Definition 8.3. Let R be a binary relation on A. Then (A, R) is a partial order iff R
is irreflexive and transitive.

Example 8.4. Each of the follow are partial orders, but not linear orders.

1. Let A be any nonempty set containing at least two elements. Then (P(A), C) is
a partial order.

2. Let D be the divisability relation on N* = N\{0}. Then (N*, D) is a partial
order.

Definition 8.5. Let (A, <) and (B, <) be partial orders. A map f: A — B is an
1somorphism iff the following conditions are satisfied.

1. f is a bijection
2. Forallz,y € A, z <y iff f(z) < f(y).
In this case, we say that (A4, <) and (B, <) are isomorphic and write (A, <)=(B, <).

Example 8.6. (Z, <)=(Z, >)
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Proof. Let f: Z — Z be the map defined by f(xz) = —z. Clearly f is a bijection. Also,
ifx,y € Z, then z <y

ift —z > —y

iff f(z) > f(y)

Thus f is an isomorphism. O
Example 8.7. (N, <)% (Z, <).

Proof. Suppose that f: N — Z is an isomorphism. Let f(0) = z. Since f is a bijection,
there exists n € N such that f(n) =z — 1. But then n > 0 and f(n) < f(0), which is a
contradiction. O

Exercise 8.8. Prove that (Z, <)% (Q, <).
Example 8.9. (Q, <)% (R, <).

Proof. Since QQ is countable and R is uncountable, there does not exist a bijection
f: Q — R. Hence there does not exist an isomorphism f: Q — R. O

Example 8.10. (R, <)% (R~{0}, <).

Proof. Suppose that f: R\{0} — R isan isomorphism. For eachn > 1, let r, = f(1/n).
Then
re>re > >y >0 > f(=1).

Let s be the greatest lower bound of {r, |n > 1}. Then there exists t € R~{0}
such that f(t) = s. Clearly ¢ < 0. Hence f(¢/2) > s. But then there exists n > 1
such that r, < f(t/2). But this means that t/2 < 1/n and f(¢/2) > f(1/n), which is a
contradiction. O]

Question 8.11. Is (Q, <)=(Q~{0}, <)?

Definition 8.12. For each prime p,
Z[1/p| ={a/p" |a € Z, n € N}.

Question 8.13. Is (Z[1/2], <)=(Z[1/3], <)?

Definition 8.14. A linear order (D, <) is a dense linear order without endpoints or
DLO iff the following conditions hold.

1. For all a,b € D, if a < b, then there exists ¢ € D such that a < ¢ < b.
2. For all a € D, there exists b € D such that a < b.
3. For all a € D, there exists b € D such that b < a.

Example 8.15. The following are DLOs.
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1. (Q <)
2. (R, <)
3. (@~{0}, <)
4. (Rx{0}, <)

Theorem 8.16. For each prime p, (Z[1/p|, <) is a DLO.

Proof. Clearly (Z[1/p], <) linear order without endpoints. Hence it is enough to show
that Z[1/p] is dense. Suppose that a,b € Z[1/p]. Then there exists ¢,d € Z and n € N
such that @ = ¢/p™ and b = d/p™. Clearly a < a + (1/p™) < b. Consider

r=5 Tt p—ln - ;ﬁﬂ € Z[1/p).
Then a <17 <b. O]

Theorem 8.17. If (A, <) and (B, <) are countable DLOs then (A, <)=(B, <).

Corollary 8.18. (Q, <)=(Q~{0}, <). O
Corollary 8.19. (Z[1/2], <)=(Z[1/3], <). O
Corollary 8.20. If p is any prime, then (Z[1/p], <)=(Q, <). O

Proof of Theorem 8.17. Let A = {a,|n € N} and B = {b,|n € N}. First define
AO = {CLO} and BO = {bo} and let foI A(] — B() be the map defined by f()(CLQ) = b(].

Now suppose inductively that we have defined a function f,: A, — B, such that
the following conditions are satisfied.

1. {ag,...,a,} C A, C A.
2. {bo,...,bn} € B, CB.
3. fn: A, — B, is an order preserving bijection.

We now extend f,, to a suitable function f, 1.

Step 1 If a1 € A, then let A/, = A,,, B!, = B,,, and f] = f,,. Otherwise, suppose for
example that

< <...<¢G<py1 <Cip1 < ...<Cpy

where A,, = {co,...,cn}. Choose some element b € B such that f,(¢;) < b < fu(cii1)
and define

A;z = An U {an+1}

B!, = B, U {b}

fo = faU{{ant1,0)}
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Step 2 If b,.; € B), then let A,., = A, B,y1 = B,

', and fn,11 = f,. Otherwise,
suppose for example that

do <dy <...<dj <bpp1 <djy1 <...<d;

where B!, = {do,...,d;}. Choose some element a € A such that (f))"*(d;) < a <
(f1)"'(dj41) and define

Appr = Al U {a}

By = B1/1 U {bn+1}

fn+1 = frll U {<a7 bn+1>}'
Finally, let f =J,~o fn- Then f: A — B is an isomorphism. O

9 Extensions

Definition 9.1. Suppose that R, S are binary relations on A. Then S extends R iff
R CR.

Example 9.2. Consider the binary relations R, S on N defined by
R={(n,m)|n<m}
S ={{n,m)|n <m}

Then S extends R.

Example 9.3. Consider the partial order < on {a,b, ¢, d, e} which is

{<d> b>> <d’ a>7 <d7 €>, <d> C>> <a7 b>7 <€a b>7 <Ca b>}
Then we can extend < to the linear order < defined by the transitive closure of
d<e<c<a<hb.

Exercise 9.4. If (A, <) is a finite partial order, then we can extend < to a linear
ordering < of A.

Question 9.5. Does the analogous result hold if (A, <) is a infinite partial order?

Definition 9.6. If A is a set and n > 1, then

A" = {{ay,...,a,) | ay,...,a, € A}
An n-ary relation on A is a subset R C A".
An n-ary operation on A is a function f: A" — A.
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