10 Propositional logic

"The study of how the truth value of compound statements depends on those of simple statements."

A reminder of truth-tables.

and \land A T T F F	В Т Г Т Г Г	$\begin{array}{c} A \land B \\ T \\ F \\ F \\ F \\ F \end{array}$
or \lor $\begin{array}{c} A \\ \hline T \\ T \\ F \\ F \\ \end{array}$	$\begin{array}{c} B \\ T \\ F \\ T \\ F \end{array}$	$ \begin{array}{c} A \lor B \\ T \\ T \\ T \\ F \end{array} $
$\begin{array}{c} \operatorname{not} \neg \\ A \\ \hline T \\ F \\ \end{array}$	$ \begin{array}{c} \neg A\\F\\T\end{array} $	l
$\begin{array}{c} \mathbf{M} \\ \underline{A} \\ \hline T \\ T \\ F \\ F \\ F \end{array}$	al in $ \frac{B}{T} $ $ F $ $ T $ $ F $ $ F $	$ \begin{array}{c} \text{mplication} \rightarrow \\ \hline A \rightarrow B \\ \hline T \\ F \\ T \\ T \\ T \end{array} $
$ \begin{array}{c} \operatorname{iff} \leftrightarrow \\ A \\ \hline T \\ T \\ F \\ F \\ F \end{array} $	В Т Г Т F	$ \begin{array}{c} A \leftrightarrow B \\ T \\ F \\ F \\ T \end{array} $

Now our study actually begins... First we introduce our *formal language*.

Definition 10.1. The *alphabet* consists of the following symbols:

2006/02/13

1. the sentence connectives

 $\neg, \land, \lor, \rightarrow, \leftrightarrow$

2. the punctuation symbols

(,)

3. the sentence symbols

 $A_1, A_2, \ldots, A_n, \ldots, n \ge 1$

Remark 10.2. Clearly the alphabet is countable.

Definition 10.3. An *expression* is a finite sequence of symbols from the alphabet.

Example 10.4. The following are expressions: $(A_1 \land A_2), \quad ((\neg \rightarrow ())A_3$

Remark 10.5. Clearly the set of expressions is countable.

Definition 10.6. The set of *well-formed formulas* (wffs) is defined recursively as follows:

- 1. Every sentence symbol A_n is a wff.
- 2. If α and β are wffs, then so are

 $(\neg \alpha), (\alpha \land \beta), (\alpha \lor \beta), (\alpha \rightarrow \beta), (\alpha \leftrightarrow \beta)$

- 3. No expression is a wff unless it is compelled to be so by repeated applications of (1) and (2).
- **Remark 10.7.** 1. From now on we omit clause (3) in any further recursive definitions.
 - 2. Clearly the set of wffs is countably infinite.
 - 3. Because the definition of a wff is recursive, most of the properties of wffs are proved by induction on the length of a wff.

Example 10.8. 1. $(A_1 \rightarrow (\neg A_2))$ is a wff.

2. $((A_1 \land A_2)$ is not a wff. How can we prove this?

Proposition 10.9. If α is a wff, then α has the same number of left and right parentheses.

Proof. We argue by induction on the length $n \ge 1$ of the wff α . First suppose that n = 1. Then α must be a sentence symbol, say A_n . Clearly the result holds in this case.

Now suppose that n > 1 and that the result holds for all wffs of length less than n. Then α must have one of the following forms:

 $(\neg\beta), (\beta \land \gamma), (\beta \lor \gamma), (\beta \rightarrow \gamma), (\beta \leftrightarrow \gamma)$

for some wffs β , γ of length less than n. By induction hypothesis the result holds for both β and γ . Hence the result also holds for α .

Definition 10.10. \mathcal{L} is the set of sentence symbols. $\overline{\mathcal{L}}$ is the set of wffs. $\{T, F\}$ is the set of truth values.

Definition 10.11. A truth assignment is a function $v: \mathcal{L} \to \{T, F\}$.

Definition 10.12. Let v be a truth assignment. Then we define the extension $\bar{v} \colon \bar{\mathcal{L}} \to \{T, F\}$ recursively as follows.

0. If
$$A_n \in \mathcal{L}$$
 then $\bar{v}(A_n) = v(A_n)$.
For any $\alpha, \beta \in \bar{\mathcal{L}}$
1. $\bar{v}((\neg \alpha)) =$
 $= T$ if $\bar{v}(\alpha) = F$
 $= F$ otherwise
2. $\bar{v}((\alpha \land \beta)) =$
 $= T$ if $\bar{v}(\alpha) = \bar{v}(\beta) = T$
 $= F$ otherwise
3. $\bar{v}((\alpha \lor \beta)) =$
 $= F$ if $\bar{v}(\alpha) = \bar{v}(\beta) = F$
 $= T$ otherwise
4. $\bar{v}((\alpha \rightarrow \beta)) =$
 $= F$ if $\bar{v}(\alpha) = T$ and $\bar{v}(\beta) = F$
 $= T$ otherwise
5. $\bar{v}((\alpha \leftrightarrow \beta)) =$
 $= T$ if $\bar{v}(\alpha) = \bar{v}(\beta)$
 $= F$ otherwise

Possible problem. Suppose there exists a wff α such that α has both the forms $(\beta \rightarrow \gamma)$ and $(\sigma \land \varphi)$ for some wffs $\beta, \gamma, \sigma, \varphi$. Then there will be two (possibly conflicting) clauses which define $\bar{v}(\alpha)$.

Fortunately no such α exists...

Theorem 10.13 (Unique readability). If α is a wff of length greater than 1, then there exists eactly one way of expressing α in the form:

 $(\neg\beta), (\beta\land\gamma), (\beta\lor\gamma), (\beta\rightarrow\gamma), \text{ or } (\beta\leftrightarrow\gamma)$ for some shorter wffs β, γ . We shall make use of the following result.

Lemma 10.14. Any proper initial segment of a wff contains more left parentheses than right parentheses. Thus no proper initial segment of a wff is a wff.

Proof. We argue by induction on the length $n \ge 1$ of the wff α . First suppose that n = 1. Then α is a sentence symbol, say A_n . Since A_n has no proper initial segments, the result holds vacuously.

Now suppose that n > 1 and that the result holds of all wffs of length less than n. Then α must have the form

 $(\neg\beta), (\beta \land \gamma), (\beta \lor \gamma), (\beta \rightarrow \gamma), \text{ or } (\beta \leftrightarrow \gamma)$

for some shorter wffs β and γ . By induction hypothesis, the result holds for both β and γ . We just consider the case when α is $(\beta \wedge \gamma)$. (The other cases are similar.) The proper initial segments of α are:

1. (

- 2. $(\beta_0 \text{ where } \beta_0 \text{ is an initial segment of } \beta$
- 3. $(\beta \wedge$
- 4. $(\beta \wedge \gamma_0 \text{ where } \gamma_0 \text{ is an initial segment of } \gamma$.

Using the induction hypothesis and the previous proposition (Proposition 10.9), we see that the result also holds for α .

Proof of Theorem 10.13. Suppose, for example, that

 $\alpha = (\beta \wedge \gamma) = (\sigma \wedge \varphi).$

Deleting the first (we obtain that

 $\beta \wedge \gamma) = \sigma \wedge \varphi).$

Suppose that $\beta \neq \sigma$. Then wlog β is a proper initial segment of σ . But then β isn't a wff, which is a contradiction. Hence $\beta = \sigma$. Deleting β and σ , we obtain that

 $\wedge \gamma) = \wedge \varphi)$

and so $\gamma = \varphi$.

Next suppose that

 $\alpha = (\beta \land \gamma) = (\sigma \rightarrow \varphi).$

Arguing as above, we find that $\beta = \sigma$ and so

 $\wedge \gamma) = \rightarrow \varphi)$

which is a contradiction.

The other cases are similar.

Definition 10.15. Let $v: \mathcal{L} \to \{T, F\}$ be a truth assignment.

1. If φ is a wff, then v satisfies φ iff $\bar{v}(\varphi) = T$.

2. If Σ is a set of wffs, then v satisfies Σ iff $\bar{v}(\sigma) = T$ for all $\sigma \in \Sigma$.

3. Σ is *satisfiable* iff there exists a truth assignment v which satisfies Σ .

- **Example 10.16.** 1. Suppose that $v: \mathcal{L} \to \{T, F\}$ is a truth assignment and that $v(A_1) = F$ and $v(A_2) = T$. Then v satisfies $(A_1 \to A_2)$.
 - 2. $\Sigma = \{A_1, (\neg A_2), (A_1 \rightarrow A_2)\}$ is not satisfiable.

Exercise 10.17. Suppose that φ is a wff and v_1 , v_2 are truth assignments which agree on all sentence symbols appearing in φ . Then $\bar{v}_1(\varphi) = \bar{v}_2(\varphi)$. (*Hint:* argue by induction on the length of φ .)

Definition 10.18. Let Σ be a set of wffs and let φ be a wff. Then Σ *tautologically implies* φ , written $\Sigma \models \varphi$, iff every truth assignment which satisfies Σ also satisfies φ .

Important Observation. Thus $\Sigma \models \varphi$ iff $\Sigma \cup \{\neg\varphi\}$ is not satisfiable.

Example 10.19. $\{A_1, (A_1 \rightarrow A_2)\} \models A_2$.

Definition 10.20. The wffs φ, ψ are *tautologically equivalent* iff both $\{\varphi\} \models \psi$ and $\{\psi\} \models \varphi$.

Example 10.21. $(A_1 \rightarrow A_2)$ and $((\neg A_2) \rightarrow (\neg A_1)$ are tautologically equivalent.

Exercise 10.22. Let σ, τ be wffs. Then the following statements are equivalent.

1. σ and τ are tautologically equivalent.

2. $(\sigma \leftrightarrow \tau)$ is a tautology.

(Hint: do not argue by induction on the lengths of the wffs.)