
Math 461 Applications and proof of compactness

11 The compactness theorem

Question 11.1. Suppose that Σ is an infinite set of wffs and that Σ |= τ . Does there
necessarily exists a finite subset Σ0 ⊆ Σ such that Σ0 |= τ?

A positive answer follows from the following result...

Theorem 11.2 (The Compactness Theorem). Let Σ be a set of wffs. If every finite
subset Σ0 ⊆ Σ is satisfiable, then Σ is satisfiable.

Definition 11.3. A set Σ of wffs is finitely satisfiable iff every finite subset Σ0 ⊂ Σ is
satisfiable.

Theorem 11.4 (The Compactness Theorem). If Σ is a finitely satisfiable set of
wffs, then Σ is satisfiable.

Before proving the compactness theorem, we present a number of its applications.

Corollary 11.5. If Σ |= τ , then there exists a finite subset Σ0 ⊆ Σ such that Σ0 |= τ .

Proof. Suppose not. Then for every finite subset Σ0 ⊆ Σ, we have that Σ0 6|= τ and hence
Σ0 ∪ {(¬τ)} is satisfiable. Thus Σ ∪ {(¬τ)} is finitely satisfiable. By the Compactness
Theorem, Σ∪{(¬τ)} is satisfiable. But this means that Σ 6|= τ , which is a contradiction.

12 A graph-theoretic application

Definition 12.1. Let E be a binary relation on the set V . Then Γ = 〈V,E〉 is a graph
iff:

1. E is irreflexive; and

2. E is symmetric.

Example 12.2. Let V = {0, 1, 2, 3, 4} and let E = {〈i, j〉 | j = i + 1 mod 5}. This is
called the cycle of length five.

Definition 12.3. Let k ≥ 1. Then the graph Γ = 〈V,E〉 is k-colorable iff there exists a
function χ : V → {1, 2, . . . k}. such that for all a, b ∈ V ,

(*) if aEb, then χ(a) 6= χ(b).

Example 12.4. Any cycle of even length is two-colorable. Any cycle of odd length is
three-colorable but not two-colorable.

Theorem 12.5 (Erdös). A countable graph Γ = 〈V,E〉 is k-colorable iff every finite
subgraph γ0 ⊂ Γ is k-colorable.
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Proof. ⇒ Suppose that Γ is k-colorable and let χ : V → {1, 2, . . . , k} is any k-coloring.
Let Γ0 = 〈V0, E0〉 be any finite subgraph of Γ. Then χ0 = χ|V0 is a k-coloring of Γ0.
⇐ In this direction we use the Compactness Theorem.

Step 1 We choose a suitable propositional language. The idea is to have a sentence
symbol for every decision we must make. So our language has sentence symbols:

Cv,i for each v ∈ V , 1 ≤ i ≤ k.
(The intended meaning of Cv,i is: “color vertex v with color i.”)

Step 2 We write down a suitable set of wffs which imposes a suitable set of constraints
on our truth assignments. Let Σ be the set of wffs of the following forms:

(a) Cv,1∨Cv,2∨ . . .∨Cv,k for each v ∈ V .

(b) ¬(Cv,i∧Cv,j) for each v ∈ V and 1 ≤ i 6= j ≤ k.

(c) ¬(Cv,i∧Cw,i) for each pair v, w ∈ V of adjacent vertices and each 1 ≤ i ≤ k.

Step 3 We check that we have chosen a suitable set of wffs.

Claim 12.6. Suppose that υ is a truth assignment which satisfies Σ. Then we can
define a k-coloring χ : Γ→ {1, . . . , k} by

χ(v) = i iff υ(Cv,i) = T .

Proof. By (a) and by (b), for each v ∈ V , there exists a unique 1 ≤ i ≤ k such that
υ(Cv,i) = T . Thus χ : V → {1, . . .} is a function. By (c), if v, w ∈ V are adjacent, then
χ(v) 6= χ(w). Hence χ is a k-coloring.

Step 4 We next prove that Σ is finitely satisfiable. So let Σ0 ⊆ Σ be any finite subset.
Let V0 ⊆ V be the finite set of vertices that are mentioned in Σ0. Then the finite
subgraph Γ0 = 〈V0, E0〉 is k-colorable. Let

χ : V0 → {1, . . . , k}
be a k-coloring of Γ0. Let υ0 be a truth assignment such that if v ∈ V0 and 1 ≤ i ≤ k,
then

υ(Cv,i) = T iff χ0(v) = i.

Clearly υ0 satisfies Σ0.
By the Compactness Theorem, Σ is satisfiable. Hence Γ is k-colorable.
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13 Extending partial orders

Theorem 13.1. Let 〈A,≺〉 be a countable partial order. Then there exists a linear
ordering < of A which extends ≺.

Proof. We work with the propositional language which has sentence symbols

La,b for a 6= b ∈ A
Let Σ be the following set of wffs:

(a) La,b∨Lb,a for a 6= b ∈ A

(b) ¬(La,b∧Lb,a) for a 6= b ∈ A

(c) ((La,b∧Lb,c)→La,c) for distinct a, b, c ∈ A

(d) La,b for distinct a, b ∈ A with a ≺ b.

Claim 13.2. Suppose that υ is a truth assignment which satisfies Σ. Define the binary
relation < on A by

a < b iff υ(La,b) = T.

Then < is a linear ordering of A which extends ≺.

Proof. Clearly < is irreflexive. By (a) and (b), < has the trichotomy property. By (c),
< is transitive. Finally, by (d), < extends ≺.

Next we prove that Σ is finitely satisfiable. So let Σ0 ⊆ Σ be any finite subset. Let
A0 ⊆ A be the finite set of elements that are mentioned in Σ0 and consider the partial
order 〈A0,≺0〉. Then there exists a partial ordering <0 of A0 extending ≺0. Let υ0 be
the truth assignment such that if a 6= b ∈ A0, then

υ0(La,b) = T iff a ≤0 b.

Clearly υ0 satisfies Σ0.
By the compactness theorem, Σ is satisfiable. Hence there exists a linear ordering <

of A which extends ≺.

14 Hall’s Theorem

Definition 14.1. Suppose that S is a set and that 〈Si | i ∈ I〉 is an indexed collection
of (not necessarily distinct) subsets of S. A system of distinct representatives is a choice
of elements xi ∈ Si for i ∈ I such that if i 6= j ∈ I, then xi 6= xj.
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Example 14.2. Let S = N and let 〈Sn | n ∈ N〉 be defined by

Sn = {n, n+ 1}
Thus S0 = {0, 1}, S1 = {1, 2}, . . . Then we can take xi = i ∈ Si.

Theorem 14.3 (Hall’s Matching Theorem (1935)). Let S be any set and let n ∈
N+. Let 〈S1, S2, . . . , Sn〉 be an indexed collection of subsets of S. Then a necessary and
sufficent condition for the existance of a system of distinct representatives is:

(H) For every 1 ≤ k ≤ n and choice of k distinct indices 1 ≤ i1, . . . , ik ≤ n, we have
|Si1 ∪ . . . ∪ Sik | ≥ k.

Challange: Prove this!

Problem 14.4. State and prove an infinite analogue of Hall’s Matching Theorem.

First Attempt Let S be any set and let 〈Sn | n ∈ N+〉 be an indexed collection of
subsets of S. Then a necessary and sufficient condition for the existence of a system of
distinct representatives is:

(H∗) For every k ∈ N+ and choice of k distinct indices i1, . . . , ik ∈ N, we have
|Si1 ∪ . . . ∪ Sik | ≥ k.

Counterexample Take S1 = N, S2 = {0}, S3 = {1}, . . ., Sn = {n − 2}, . . . Clearly
(H∗) is satisfied and yet there is no system of distinct representatives.

Question 14.5. Where does the compactness argument break down?

Theorem 14.6 (Infinite Hall’s Theorem). Let S be any set and let 〈Sn | n ∈ N+〉 be
an indexed collection of finite subsets of S. Then a necessary and sufficient condition
for the existence of a system of distinct representatives is:

(H∗) For every k ∈ N+ and choice of k distinct indices i1, . . . , ik ∈ N, we have
|Si1 ∪ . . . ∪ Sik | ≥ k.

Proof. We work with the propositional language with sentence symbols

Cn,x. n ∈ N+, x ∈ Sn.

Let Σ be the following set of wffs:

(a) ¬(Cn,x∧Cm,x) for n 6= m ∈ N+, x ∈ Sn ∩ Sm.

(b) ¬(Cn,x∧Cn,y) for n ∈ N+, x 6= y ∈ Sn ∩ Sm.

(c) (Cn,x1∨ . . .∨Cn,xk) for n ∈ N+, where Sn = {x1, . . . , xk}.
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Claim 14.7. Suppose that υ is a truth assignment which satisfies Σ. Then we can
define a system of distinct representatives by

x ∈ Sn iff υ(Cn,x) = T.

Proof. By (b) and (c), each Sn gets assigned a unique representative. By (a), distinct
sets Sm 6= Sm get assigned distinct representatives.

Next we prove that Σ is finitely satisfiable. So let Σ0 ⊆ Σ be any finite subset. Let
{i1, . . . , il} be the indices that are mentioned in Σ0. Then {Si1 , . . . Sil} satisfies condition
(H). By Hall’s Theorem, there exists a set of distinct representatives for {Si1 , . . . Sil};
say, xr ∈ Sir . Let υ0 be the truth assignment such that for 1 ≤ r ≤ l and x ∈ Sir ,

υ(Cir,x) = T iff x = xr.

Clearly υ0 satisfies Σ0.
By the Compactness Theorem, Σ is satisfiable. Hence there exists a system of distinct

representatives.

15 Proof of compactness

Theorem 15.1 (The Compactness Theorem). If Σ is a finitely satisfiable set of
wffs, then Σ is satisfiable.

Basic idea Imagine that for each sentence symbol An, either An ∈ Σ or ¬An ∈ Σ.
Then there is only one possibility for a truth assignment υ which satisfies Σ: namely,

υ(An) = T iff An ∈ Σ.

Presumably this υ works...
In the general case, we extend Σ to a finitely satisfiable set ∆ as above. For technical

reasons, we construct ∆ so that for every wff α, either α ∈ ∆ or ¬α ∈ ∆.

Lemma 15.2. Suppose that Σ is a finitely satisfiable set of wffs. If α is any wff, then
either Σ ∪ {α} is finitely satisfiable or Σ ∪ {¬α} is finitely satisfiable.

Proof. Suppose that Σ ∪ {α} isn’t finitely satisfiable. Then there exists a finite subset
Σ0 ⊆ Σ such that Σ0 ∪ {α} isn’t satisfiable. Thus Σ |= ¬α. We claim that Σ ∪ ¬α is
fintely satisfiable. Let ∆ ⊆ Σ∪{¬α} be any finite subset. If ∆ ⊆ Σ then ∆ is satisfiable.
Hence we can suppose that ∆ = ∆0 ∪ {¬α} for some finite subset ∆0 ⊆ Σ. Since Σ
is finitely satisfiable, ther exists a truth assignment υ which satisfies Σ0 ∩ ∆0. Since
Σ0 |= ¬α, it follows that ῡ(¬α) = T . Hence υ satisfies ∆0 ∪ {¬α}.
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Proof of the Compactness Theorem. Let Σ be a finitely satisfiable set of wffs. Let

α1, α2, . . . , αn, . . . n ≥ 1

be an enumeration of all the wffs α ∈ L̄. We shall inductively define an increasing
sequence of finitely satisfiable sets of wffs

∆0 ⊆ ∆1 ⊆ . . . ⊆ ∆n ⊆ . . .

First let ∆0 = Σ. Suppose inductively that ∆n has been defined. Then

∆n+1 = ∆n ∪ {αn+1}, if this is finitely satisfiable

= ∆n ∪ {(¬αn+1)}, otherwise.

By the lemma, ∆n+1 is also finitely satisfiable. Finally define

∆ =
⋃

n

∆n.

Claim 15.3. ∆ is finitely satisfiable.

Proof. Suppose that Φ ⊆ ∆ is a finite subset. Then there exists an n such that Φ ⊆ ∆n.
Since ∆n is finitely satisfiable, Φ is satisfiable.

Claim 15.4. If α is any wff, then either α ∈ ∆ or (¬α) ∈ ∆.

Proof. There exists an n ≥ 1 such that α = αn. By construction, either αn ∈ ∆n+1 or
(¬αn) ∈ ∆n+1; and ∆n+1 ⊆ ∆.

Define a truth assignment υ : L → {T, F} by

υ(Al) = T iff Al ∈ ∆.

Claim 15.5. For every wff α, ῡ(α) = T iff α ∈ ∆.

Proof. We argue by induction on the length m of the wff α. First suppose that m = 1.
Then α is a sentence symbol; say, α = Al. By definition

ῡ(Al) = υ(Al) = T iff Al ∈ ∆.

Now suppose that m > 1. Then α has the form

(¬β), (β∧γ), (β∨γ), (β→γ), (β↔γ)

for some shorter wffs β, γ.
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Case 1 Suppose that α = (¬β). Then

ῡ(α) = T iff ῡ(β) = F

iff β /∈∆ by induction hypothesis

iff (¬β) ∈ ∆ by Claim 15.4

iff α ∈ ∆

Case 2 Suppose that α is (β∨γ). First suppose that ῡ(α) = T . Then ῡ(β) = T or
ῡ(γ) = T . By induction hypothesis, β ∈ ∆ or γ ∈ ∆. Since ∆ is finitely satisfiable,
{β, (¬(β∨γ))} 6⊆ ∆ and {γ, (¬(β∨γ))} 6⊆ ∆. Hence (¬(β∨γ))/∈∆ and so (β∨γ) ∈ ∆.

Conversely suppose that (β∨γ) ∈ ∆. Since ∆ is finitely satisfiable, {(¬β), (¬γ), (β∨Γ)} 6⊆
∆. Hence (¬β)/∈∆ or (¬γ)/∈∆; and so β ∈ ∆ or γ ∈ ∆. By induction hypothesis,
ῡ(β) = T or ῡ(γ) = T . Hence ῡ(β∨γ) = T .

Exercise 15.6. Write out the details for the other cases.

Thus υ satisfies ∆. Since Σ ⊆ ∆, it follows that υ satisfies Σ.
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