16 Trees and Konig's Lemma

Definition 16.1. A partial order $\langle T, \prec \rangle$ is a *tree* iff the following conditions are satisfied.

- 1. There exists a unique minimal element $t_0 \in T$ called the *root*.
- 2. For each $t \in T$, the set

$$Pr_T(t) = \{ s \in T \mid s \prec t \}$$

is a finite set which is linearly ordered by \prec .

Example 16.2. The complete binary tree is defined to be

$$T_2 = \{ f \mid f \colon n \to \{0, 1\} \}$$

ordered by

$$f \prec g$$
 iff $f \subset g$.

Definition 16.3. Let $\langle T, \prec \rangle$ be a tree.

1. If $t \in T$, then the *height* of t is defined to be

$$ht_T(t) = |Pr_T(t)|.$$

2. For each $n \geq 0$, the n^{th} level of T is

$$Lev_T(n) = \{t \in T \mid ht_T(t) = n\}.$$

3. For each $t \in T$, the set of immediate successors of t is

$$\operatorname{succ}_T(t) = \{ s \in T \mid t \prec s \text{ and } \operatorname{ht}_T(s) = \operatorname{ht}_T(t) + 1 \}.$$

- 4. T is finitely branching iff each $t \in T$ has a finite (possibly empty) set of immediate successors.
- 5. A branch \mathcal{B} of T is a maximal linearly ordered subset of T.

Example 16.4. Consider the complete binary tree T_2 . If $\varphi \colon \mathbb{N} \to \{0,1\}$, then we can define a corresponding branch of T_2 by

$$\mathcal{B}_{\varphi} = \{ \varphi | n \mid n \in \mathbb{N} \}.$$

Conversely, let \mathcal{B} be an arbitrary branch of T_2 . Let $\varphi = \bigcup \mathcal{B}$. Then $\varphi \colon \mathbb{N} \to \{0,1\}$ and $\mathcal{B} = \mathcal{B}_{\varphi}$.

Exercise 16.5. Let $\langle T, \prec \rangle$ be a tree. Then the following are equivalent:

2006/03/06

- 1. T is finitely branching.
- 2. Lev_T(n) is finite for all $n \geq 0$.

Lemma 16.6 (König). Suppose that T is an infinite finitely branching tree. Then there exists an infinite branch \mathcal{B} through T.

Remark 16.7. Note that such a branch \mathcal{B} necessarily satisfies:

$$|\mathcal{B} \cap \text{Lev}_T(n)| = 1 \text{ for all } n \geq 0.$$

First we shall give a proof of König's Lemma, using the Compactness Theorem.

Proof of König's Lemma. Let $\langle T, \prec \rangle$ be an infinite finitely branching tree. Then each level Lev_T(n) is finite and so T is countably infinite. We shall work with the propositional language with sentence symbols $\{B_t \mid t \in T\}$. Let Σ be the following set of wffs:

- (a) $B_{t_1} \vee ... \vee B_{t_l}$ where $Lev_T(n) = \{t_1, ..., t_l\}$ and $n \geq 0$.
- (b) $\neg (B_{t_i} \land B_{t_i})$ where $\text{Lev}_T(n) = \{t_1, \dots, t_l\}, n \geq 0, \text{ and } 1 \leq i < j \leq l.$
- (c) $(B_s \rightarrow B_t)$ for $s, t \in T$ with $s \prec t$.

Claim 16.8. Suppose that v is a truth assignment which satisfies Σ . Then

$$\mathcal{B} = \{ t \in T \mid \upsilon(B_t) = T \}$$

is an infinite branch through T.

Proof. By (a) and (b), \mathcal{B} intersects every level in a unique point. Suppose that $s \neq t \in \mathcal{B}$. Then wlog we have that $\operatorname{ht}_T(s) < \operatorname{ht}_T(t)$. Let $n = \operatorname{ht}_T(s)$. By (c), \mathcal{B} must contain the predecessor of t in $\operatorname{Lev}_T(n)$, which must be equal to s. Thus $s \prec t$. It follows that \mathcal{B} is linearly ordered.

We claim that Σ is finitely satisfiable. Let $\Sigma_0 \subseteq \Sigma$ be a finite subset. Then there exists $n \geq 0$ such that if $t \in T$ is mentioned in Σ_0 , then $\operatorname{ht}_T(t) < n$. Choose $t_0 \in \operatorname{Lev}_T(n)$ and let v_0 be the truth assignment such that for all $t \in T$ with $\operatorname{ht}_T(t) < n$,

$$v_0(B_t) = T \quad \text{iff} \quad t < t_0.$$

Clearly v_0 satisfies Σ_0 . By Compactness, Σ is satisfiable and hence T has an infinite branch.

Next we shall give a direct proof of König's Lemma.

Proof of König's Lemma. Let T be an infinite finitely branching tree. We shall define a sequence of elements $t_n \in T$ inductively so that the following conditions are satisfied:

2006/03/06 2

- (a) $t_n \in \text{Lev}_T(n)$
- (b) If m < n then $t_m \prec t_n$.
- (c) $\{s \in T \mid t_n \prec s\}$ is infinite.

First let $t_0 \in \text{Lev}_T(0)$ be the root. Clearly the above conditions are satisfied.. Assume inductively that t_n has been defined. Then t_n has a finite set of immediate successors; say $\{a_1, \ldots, a_l\}$. If $t_n \prec s$ and $\text{ht}_T(s) > n+1$, then there exists $1 \leq i \leq l$ such that $a_i \prec s$. By the pigeon hole principle, there exists $1 \leq i \leq l$ such that a_i satisfies (c). Then we define $t_{n+1} = a_i$. Clearly $\mathcal{B} = \{t_n \mid n \geq 0\}$ is an infinite branch through T. \square

Next we present an application of König's Lemma.

Theorem 16.9 (Erdös). A countably infinite graph Γ is k-colorable iff every finite subgraph of Γ is k-colorable.

Proof. (\Rightarrow) Trival!

 (\Leftarrow) Suppose that every finite subgraph of Γ is k-colorable. Let $\Gamma = \{v_1, v_2, \ldots, v_n, \ldots\}$; and for each $n \geq 1$, let $\Gamma_n = \{v_1, \ldots, v_n\}$ and let C_n be the set of k-colorings of Γ_n . Let T be the tree with levels defined by

$$Lev_T(0) = \{\emptyset\}$$

 $Lev_T(n) = C_n \text{ for } n \ge 0$

partially ordered as follows. Suppose that $\chi \in \text{Lev}_T(n)$ and $\theta \in \text{Lev}_T(m)$ where $1 \leq n < m$. Then

$$\chi \prec \theta \text{ iff } \chi = \theta | \{v_1, \dots, v_n\}.$$

Clearly T is an infinite finitely branching tree. By König's Lemma, there exists an infinite branch $\mathcal{B} = \{\chi_n \mid n \in \mathbb{N}\}$ through T, where $\chi_n \in \text{Lev}_T(n)$. We claim that $\chi = \bigcup_n \chi_n$ is a k-coloring of Γ . It is clear that $\chi \colon \Gamma \to \{1, \ldots, k\}$. Next suppose that $a \neq b \in \Gamma$ are adjacent vertices. Then there exists $n \geq 1$ such that $a, b \in \Gamma_n$. By definition, we have that $\chi(a) = \chi_n(a)$ and $\chi(b) = \chi_n(b)$. Since χ_n is a k-coloring of Γ_n , it follows that $\chi_n(a) \neq \chi_n(b)$. Thus $\chi(a) \neq \chi(b)$.

Finally we use König's Lemma to give a proof of the Compactness Theorem.

Proof of Compactness Theorem. Suppose that Σ is a finitely satisfiable set of wffs in the propositional language with sentence symbols $\{A_1, A_2, \ldots, A_n, \ldots\}$. We define a tree T as follows.

• $Lev_T(0) = \{\emptyset\}$

2006/03/06 3

• If $n \geq 1$, then $\text{Lev}_T(n)$ is the set of all partial truth assignments $v : \{A_1, \ldots, A_n\} \rightarrow \{T, F\}$ which satisfy every $\sigma \in \Sigma$ which only mention A_1, \ldots, A_n .

We partially order T as follows. Suppose that $v \in \text{Lev}_T(n)$ and $v' \in \text{Lev}_T(m)$, where $1 \leq n < m$. Then

$$v \prec v'$$
 iff $v = v' | \{A_1, \dots, A_n\}.$

Clearly $|\text{Lev}_T(n)| \leq 2^n$ and so each level $\text{Lev}_T(n)$ is finite.

Claim 16.10. For each $n \geq 0$, Lev_T $(n) \neq \emptyset$.

Proof. Clearly we can suppose that $n \geq 1$. Let Σ_n be the set of wffs in Σ which only involve A_1, \ldots, A_n . If Σ_n is finite, the result holds by the finite satisfiability of Σ . Hence we can suppose that Σ_n is infinite; say $\Sigma_n = \{\sigma_1, \sigma_2, \ldots, \sigma_t, \ldots\}$. For each $t \geq 1$, let $\Delta_t = \{\sigma_1, \ldots, \sigma_t\}$. Then there exists a partial truth assignment $\omega_t \colon \{A_1, \ldots, A_n\} \to \{T, F\}$ which satisfies Δ_t . By the pigeon hole principle, there exists a fixed $\omega \colon \{A_1, \ldots, A_n\} \to \{T, F\}$ such that $\omega_t = \omega$ for infinitely many $t \geq 1$. Clearly $\omega \in \text{Lev}_T(n)$.

Thus T is an infinite, finitely branching tree. By König's Lemma, there exists an infinite branch $\mathcal{B} = \{v_n \mid n \in \mathbb{N}\}$ through T, where $v_n \in \text{Lev}_T(n)$. It follows that $v = \bigcup_n v_n$ is a truth assignment which satisfies Σ .

2006/03/06