Math 461 Konig’s Lemma

16 'Trees and Konig’s Lemma

Definition 16.1. A partial order (T, <) is a tree iff the following conditions are satisfied.
1. There exists a unique minimal element ¢, € T" called the root.

2. For each t € T, the set
Prr(t) ={seT|s <t}

is a finite set which is linearly ordered by <.

Example 16.2. The complete binary tree is defined to be

T=A{f1f:n—A01}}

ordered by
f=g iff fCug.

Definition 16.3. Let (T, <) be a tree.
1. If t € T', then the height of t is defined to be
htr(t) = |Prp(t)].
2. For each n > 0, the n'™ level of T is

Levy(n) = {t € T' | htp(t) = n}.

3. For each t € T, the set of immediate successors of t is

sucer(t) ={s € T'|t < s and hty(s) = htp(¢) + 1}.

4. T is finitely branching iff each t € T has a finite (possibly empty) set of immediate
SUCCESSOTS.

5. A branch B of T is a maximal linearly ordered subset of T'.

Example 16.4. Consider the complete binary tree Ts. If p: N — {0,1}, then we can
define a corresponding branch of T, by

B, = {¢|n|n e N}.

Conversely, let B be an arbitrary branch of T5. Let ¢ = |JB. Then ¢: N — {0,1} and
B = B,.

Exercise 16.5. Let (T, <) be a tree. Then the following are equivalent:
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1. T is finitely branching.
2. Levy(n) is finite for all n > 0.

Lemma 16.6 (Konig). Suppose that T is an infinite finitely branching tree. Then there
exists an infinite branch B through T

Remark 16.7. Note that such a branch B necessarily satisfies:
|BN Levy(n)| =1 for all n > 0.

First we shall give a proof of Konig’s Lemma, using the Compactness Theorem.

Proof of Kionig’s Lemma. Let (T, <) be an infinite finitely branching tree. Then each
level Levy(n) is finite and so T is countably infinite. We shall work with the propositional
language with sentence symbols {B; |t € T'}. Let ¥ be the following set of wffs:

(a) By, V...VBy;, where Levyp(n) = {t1,...,%} and n > 0.
(b) =(ByABy,) where Levy(n) = {t1,...,t;},n > 0,and 1 <i < j <.
(¢) (Bs—By) for s, t € T with s < t.

Claim 16.8. Suppose that v is a truth assignment which satisfies 3. Then
B={teT|v(B) =T}
is an infinite branch through T

Proof. By (a) and (b), B intersects every level in a unique point. Suppose that s # ¢t € B.
Then wlog we have that htr(s) < hty(¢). Let n = htr(s). By (c), B must contain the
predecessor of ¢ in Levy(n), which must be equal to s. Thus s < ¢. It follows that B is
linearly ordered. L]

We claim that X is finitely satisfiable. Let ¥y C X be a finite subset. Then there
exists n > 0 such that if ¢ € T" is mentioned in ¥, then ht7(¢) < n. Choose ty € Levr(n)
and let vy be the truth assignment such that for all ¢ € T" with hty(¢) < n,

’Uo(Bt) =T iff t< to.

Clearly v satisfies ¥y. By Compactness, X is satisfiable and hence T has an infinite
branch. l

Next we shall give a direct proof of Konig’s Lemma.

Proof of Konig’s Lemma. Let T be an infinite finitely branching tree. We shall define a
sequence of elements ¢, € T" inductively so that the following conditions are satisfied:
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(a) t, € Levy(n)
(b) If m < n then t,, < t,.
(c) {s €T |ty < s} is infinite.

First let ¢y € Levy(0) be the root. Clearly the above conditions are satisfied.. Assume
inductively that ¢, has been defined. Then t,, has a finite set of immediate successors;
say {ai,...,aq;}. If t, < s and htp(s) > n + 1, then there exists 1 < i < [ such that
a; < s. By the pigeon hole principle, there exists 1 < i < [ such that a; satisfies (c).
Then we define t,1 = a;. Clearly B = {t,, | n > 0} is an infinite branch through 7. O

Next we present an application of Konig’s Lemma.

Theorem 16.9 (Erdés). A countably infinite graph T' is k-colorable iff every finite
subgraph of T us k-colorable.

Proof. (=) Trivall

(<) Suppose that every finite subgraph of I' is k-colorable. Let I' = {vq,v9, ..., vp,...};
and for each n > 1, let '), = {vy,...,v,} and let C,, be the set of k-colorings of T',,. Let
T be the tree with levels defined by

Levr(0) = {0}
Levp(n) = C, forn>0

partially ordered as follows. Suppose that x € Levy(n) and 6 € Levy(m) where 1 <
n < m. Then
x <6 iff x=0{vy,...,v.}.

Clearly T is an infinite finitely branching tree. By Konig’s Lemma, there exists an
infinite branch B = {x, |n € N} through T, where y, € Levy(n). We claim that
x = U, Xn is a k-coloring of I'. It is clear that x: I' — {1,...,k}. Next suppose that
a # b € I' are adjacent vertices. Then there exists n > 1 such that a,b € T',,. By
definition, we have that x(a) = x,(a) and x(b) = x»(b). Since x,, is a k-coloring of T',,,
it follows that x,(a) # xn(b). Thus x(a) # x(b). O

Finally we use Konig’s Lemma to give a proof of the Compactness Theorem.

Proof of Compactness Theorem. Suppose that Y is a finitely satisfiable set of wifs in the
propositional language with sentence symbols {A;, As, ..., A,,...}. We define a tree T
as follows.

o Levy(0) = {0}
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e Ifn > 1, then Levy(n) is the set of all partial truth assignments v: {A;,..., A,} —
{T, F'} which satisfy every o € ¥ which only mention Ay, ..., A,.

We partially order 7" as follows. Suppose that v € Levy(n) and v" € Levy(m), where
1 <n < m. Then
v=<v iff v=0v1{A, ..., A}

Clearly |Levy(n)| < 2" and so each level Levy(n) is finite.

Claim 16.10. For each n > 0, Levy(n) # 0.

Proof. Clearly we can suppose that n > 1. Let X, be the set of wiffs in ¥ which only
involve Ay, ..., A,. If ¥, is finite, the result holds by the finite satisfiability of 3. Hence
we can suppose that 3, is infinite; say 3, = {01,09,...,0,...}. Foreacht > 1,let A, =
{o1,...,0¢}. Then there exists a partial truth assignment w;: {A;,...,4,} — {1, F}
which satisfies A;. By the pigeon hole principle, there exists a fized w: {Ay,..., A} —
{T, F'} such that w, = w for infinitely many ¢ > 1. Clearly w € Levy(n). O

Thus T is an infinite, finitely branching tree. By Ko6nig’s Lemma, there exists an
infinite branch B = {v, |n € N} through T, where v, € Levyp(n). It follows that
v =J, v is a truth assignment which satisfies X. O]
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