17 First Order Logic

Definition 17.1. The *alphabet* of a first order language \mathcal{L} consists of:

A. Symbols common to all languages (Logical Symbols)

- (a) Parentheses (,)
- (b) Connectives \rightarrow, \neg
- (c) Variables $v_1, v_2, \ldots, v_n, \ldots, n \ge 0$
- (d) Quantifier \forall
- (e) Equality symbol =
- B. Symbols particular to the language (Non-logical Symbols)
 - (a) For each $n \ge 1$, a (possibly empty) countable set of *n*-place predicate symbols.
 - (b) A (possibly empty) countable set of constant symbols.
 - (c) For each $n \ge 1$, a (possibly empty) countable set of *n*-place function symbols.

Remark 17.2. It is easily checked that the alphabet is countable.

Definition 17.3. An *expression* is a finite sequence of symbols from the alphabet.

Remark 17.4. The set of expressions is countable.

Definition 17.5. The set of terms is defined inductively as follows:

- 1. Each variable and each constant symbol is a term.
- 2. If f is an n-place function symbol and t_1, \ldots, t_n are terms, then $ft_1 \ldots t_n$ is a term.

Definition 17.6. An *atomic formula* is an expression of the form

 $Pt_1 \dots t_n$

where P is an n-place predicate symbol and t_1, \ldots, t_n are terms.

Remark 17.7. The equality symbol = is a two-place predicate symbol. Hence every language has atomic formulas.

Definition 17.8. The set of *well-formed formulas* (wffs) is defined inductively as follows:

- 1. Every atomic formula is a wff.
- 2. If α and β are wffs and v is a variable, then

$$(\neg \alpha), (\alpha \rightarrow \beta), \text{ and } \forall v \alpha$$

are wffs.

2006/03/20

Some abbreviations We usually write

$$\begin{array}{ll} (\alpha \lor \beta) & \text{instead of} & ((\neg \alpha) \rightarrow \beta) \\ (\alpha \land \beta) & " & (\neg (\alpha \rightarrow (\neg \beta))) \\ \exists v \alpha & " & (\neg \forall v (\neg \alpha)) \\ u = t & " & = ut \\ u \neq t & " & (\neg = ut) \end{array}$$

We also use common sense in our use of parentheses.

Definition 17.9. Let x be a variable.

- 1. If α is atomic, then x occurs free in α iff x occurs in α .
- 2. x occurs free in $(\neg \alpha)$ iff x occurs free in α .
- 3. x occurs free in $(\alpha \rightarrow \beta)$ iff x occurs free in α or x occurs free in β .
- 4. x occurs free in $\forall v \alpha$ iff x occurs free in α and $x \neq v$.

Definition 17.10. The wff σ is a *sentence* iff σ has no free variables.

18 Truth and Structures

Definition 18.1. A structure \mathcal{A} for the first order language \mathcal{L} consists of:

- 1. a non-empty set A, the *universe* of A.
- 2. for each *n*-place predicate symbol P, an *n*-ary relation $P^{\mathcal{A}} \subseteq A^n$.
- 3. for each constant symbol c, an element $c^{\mathcal{A}} \in A$.
- 4. for each function symbol f, an *n*-ary operation $f^{\mathcal{A}} \colon A^n \to A$.

Example 18.2. Suppose that \mathcal{L} has the following non-logical symbols:

- 1. a 1-place predicate symbol S
- 2. a 2-place predicate symbol R
- 3. a constant symbol c
- 4. a 1-place function symbol f.

Then we can define a structure

$$\mathcal{A} = \langle A; S^{\mathcal{A}}, R^{\mathcal{A}}, c^{\mathcal{A}}, f^{\mathcal{A}} \rangle$$

for \mathcal{L} as follows:

1. $A = \{1, 2, 3, 4\}$ 2. $S^{\mathcal{A}} = \{\langle 2 \rangle, \langle 3 \rangle\}$ 3. $R^{\mathcal{A}} = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 4 \rangle, \langle 4, 1 \rangle\}$ 4. $c^{\mathcal{A}} = 1$ 5. $f^{\mathcal{A}} \colon A \to A$ where $1 \mapsto 2, 2 \mapsto 3, 3 \mapsto 4$, and $4 \mapsto 1$.

Target Let \mathcal{L} be any first order language. For each sentence σ and each structure \mathcal{A} for \mathcal{L} , we want to define

 $\mathcal{A} \models \sigma$

" \mathcal{A} satisfies σ " or " σ is true in \mathcal{A} ".

Example 18.3 (Example Cont.). Let σ be the sentence

$$\forall x \forall y (fx = y \rightarrow Rxy)$$

Clearly

 $\mathcal{A} \models \sigma$.

First we need to define a more involved notion. Let

- φ be a wff
- \mathcal{A} be a structure for \mathcal{L}
- $s: V \to A$ be a function, where v is the set of variables.

Then we will define

$$\mathcal{A} \models \varphi[s]$$

" φ is true in \mathcal{A} if each free occurrence of x in φ is interpreted as s(x) in \mathcal{A} ."

Step 1

Let T be the set of terms. We first define an extension $\bar{s}: T \to A$ as follows:

- 1. For each variable $v \in V$, $\bar{s}(v) = s(v)$.
- 2. For each constant symbol $c, \bar{s}(c) = c^{\mathcal{A}}$.

3. If f is an n-place function symbol and t_1, \ldots, t_n are terms, then

$$\bar{s}(ft_1\ldots t_n) = f^{\mathcal{A}}(\bar{s}(t_1),\ldots,\bar{s}(t_n)).$$

Step 2 Atomic formulas.

- (a). $\mathcal{A} \models = t_1 t_2[s]$ iff $\bar{s}(t_1) = \bar{s}(t_2)$.
- (b). If P is an n-place predicate symbol different from = and t_1, \ldots, t_n are terms, then

$$\mathcal{A} \models Pt_1 \dots t_n[s] \text{ iff } \langle \bar{s}(t_1), \dots, \bar{s}(t_n) \rangle \in P^{\mathcal{A}}$$

Step 3 Other wffs.

(c). A ⊨ (¬α)[s] iff A ⊭ α[s].
(d). A ⊨ (α→β)[s] iff A ⊭ α[s] or A ⊨ β[s].
(e). A ⊨ ∀xα[s] iff for all a ∈ A, A ⊨ α[s(x|a)] where s(x|a) is defined by s(x|a)(y) = s(y), y ≠ x

Theorem 18.4. Assume that $s_1, s_2: V \to A$ agree on all free variables (if any) of the wff φ . Then

= a, y = x

$$\mathcal{A} \models \varphi[s_1] \quad iff \quad \mathcal{A} \models \varphi[s_2].$$

Proof slightly delayed.

Corollary 18.5. If σ is a sentence, then either

- 1. $\mathcal{A} \models \sigma[s]$ for all $s \colon V \to A$ or
- 2. $\mathcal{A} \not\models \sigma[s]$ for all $s \colon V \to A$.

Definition 18.6. Let σ be a sentence. Then $\mathcal{A} \models \sigma$ iff $\mathcal{A} \models \sigma[s]$ for all $s: V \to A$.

Exercise 18.7. Let \mathcal{A} be a structure and let t be a term. If $s_1, s_2 \colon V \to A$ agree on all variables (if any) in t, then $\bar{s_1}(t) = \bar{s_2}(t)$.

Proof of Theorem 18.4. We argue by induction on the complexity of φ .

Case 1 Suppose that φ is an atomic formula. First suppose that φ is $= t_1 t_2$. By the Exercise, $\bar{s_1}(t_1) = \bar{s_2}(t_1)$ and $\bar{s_1}(t_2) = \bar{s_2}(t_2)$. Hence

$$\mathcal{A} \models = t_1 t_2[s_1] \quad \text{iff} \quad \bar{s_1}(t_1) = \bar{s_1}(t_2)$$
$$\text{iff} \quad \bar{s_2}(t_1) = \bar{s_2}(t_2)$$
$$\text{iff} \quad \mathcal{A} \models = t_1 t_2[s_2].$$

Next suppose that φ is $Pt_1 \dots t_n$. Again by the Exercise, $\bar{s}_1(t_i) = \bar{s}_2(t_i)$ for $1 \le i \le n$. Hence

$$\begin{split} \mathcal{A} &\models Pt_1 \dots t_n[s_1] \quad \text{iff} \quad \langle \bar{s_1}(t_1), \dots, \bar{s_1}(t_n) \rangle \in P^{\mathcal{A}} \\ & \text{iff} \quad \langle \bar{s_2}(t_1), \dots, \bar{s_2}(t_n) \rangle \in P^{\mathcal{A}} \\ & \text{iff} \quad \mathcal{A} \models Pt_1 \dots t_n[s_2]. \end{split}$$

Case 2 Suppose that φ is $(\neg \psi)$. Then s_1, s_2 agree on the free variables of ψ . Hence

$$\mathcal{A} \models (\neg \psi)[s_1] \quad \text{iff} \quad \mathcal{A} \not\models \psi[s_1] \\ \text{iff} \quad \mathcal{A} \not\models \psi[s_2] \text{ by ind. hyp.} \\ \text{iff} \quad \mathcal{A} \models (\neg \psi)[s_2].$$

Case 3 A similar argument deals with the case when φ is $(\psi \rightarrow \theta)$.

Case 4 Suppose that φ is $\forall x\psi$. Then s_1, s_2 agree on all free variables of ψ except possibly x. Hence for all $a \in A$, $s_1(x|a)$ and $s_2(x|a)$ agree on all free variables of ψ . Thus

$$\mathcal{A} \models \forall x \psi[s_1] \quad \text{iff} \quad \text{for all } a \in A, \ \mathcal{A} \models \psi[s_1(x|a)]$$
$$\text{iff} \quad \text{for all } a \in A, \ \mathcal{A} \models \psi[s_2(x|a)]$$
$$\text{iff} \quad \mathcal{A} \models \forall x \psi[s_2].$$