
Math 461 Compactness

19 Compactness in first order logic

Definition 19.1. Let Σ be a set of wffs.

(a) A satisfies Σ with s iff A |= σ[s] for all σ ∈ Σ.

(b) Σ is satisfiable iff there exists a structure A and a function s : V → A such that
A satisfies Σ with s.

(c) Σ is finitely satisfiable iff every finite subset of Σ is satisfiable.

One of the deepest results of the course:

Theorem 19.2 (Compactness). Let Σ be a set of wffs in the first order language L.
If Σ is finitely satisfiable, then Σ is satisfiable.

Application of the Compactness Theorem Let L be the language of arithmetic; ie
L has non-logical symbols {+,×, <, 0, 1}. Let

ThN = {σ | σ is a sentence satisfied by 〈N; +,×, <, 0, 1〉}.
Consider the following set Σ of wffs:

ThN ∪ {x > 1 + . . .+ 1︸ ︷︷ ︸
n times

| n ≥ 1}.

We claim that Σ is finitely satisfiable. To see this, suppose that Σ0 ⊆ Σ is any finite
subset; say, Σ0 = T ∪ {x > 1 + . . .+ 1︸ ︷︷ ︸

n1

, . . . , x > 1 + . . .+ 1︸ ︷︷ ︸
nt

}, where T ⊆ ThN. Let

m = max{n1, . . . , nt} and let s : V → N with s(x) = m + 1. Then N satisfies Σ0

with s. By the Compactness Theorem, there exists a structure A for L and a function
s : V → A such that A satisfies Σ with s. Thus A is a “model of artihmetic” containing
the “infinite natural number” s(x) ∈ A.

Discussion of the order relation in A....
Now we return to the systematic development of first order logic.

Definition 19.3. Let A,B be structures for the language L. A function f : A → B is
an isomprphism iff the following conditions are satisfied.

1. f is a bijection.

2. For each n-ary predicate symbol P and any n-tuple a1, . . . , an ∈ A,

〈a1, . . . , an〉 ∈ PA iff 〈f(a1), . . . , f(an)〉 ∈ P B.

3. For each constant symbol c, f(cA) = cB.
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4. For each n-ary function symbol h and n-tuple a1, . . . , an ∈ A,

f(hA(a1, . . . , an)) = hB(f(a1), . . . , f(an)).

We write A∼=B iff A and B are isomorphic.

Theorem 19.4. Suppose that ϕ : A→ B is an isomorphism. If σ is any sentence, then
A |= σ iff B |= σ.

In order to prove the above theorem, we must prove the following more general
statement.

Theorem 19.5. Suppose that ϕ : A → B is an isomorphism and s : V → A. Then for
any wff α

A |= α[s] iff B |= α[ϕ ◦ s].
We shall make use of the following result.

Lemma 19.6. With the above hypotheses, for each term t,

ϕ(s̄(t)) = (ϕ ◦ s)(t).
Proof. Exercise.

Proof of Theorem 19.5. We argue by induction of the complexity of α. First suppose
that α is atomic, say Pt1 . . . tn. Then

A |= Pt1 . . . tn[s] iff 〈s̄(t1), . . . , s̄(tn)〉 ∈ PA
iff 〈ϕ(s̄(t1)), . . . , ϕ(s̄(tn))〉 ∈ P B
iff 〈(ϕ ◦ s)(t1)), . . . , (ϕ ◦ s)(tn)〉 ∈ P B
iff B |= Pt1 . . . tn[ϕ ◦ s]

Next suppose that α is ¬β. Then

A |= ¬β[s] iff A 6|= β[s]

iff B 6|= β[ϕ ◦ s]
iff B |= ¬β[ϕ ◦ s]

A similar argument deals with the case when α is (β =⇒ γ).
Finally suppose that α is ∀vβ. Then

A |= ∀vβ[s] iff A |= β[s(v|a)], for all a ∈ A
iff B |= β[ϕ ◦ s(v|a)], for all a ∈ A
iff B |= β[(ϕ ◦ s)(v|ϕ(a))], for all a ∈ A
iff B |= β[(ϕ ◦ s)(v|b)], for all b ∈ B
iff B |= ∀vβ[ϕ ◦ s]
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Example 19.7. 〈N, <〉6∼= 〈Z, <〉.

Proof. Consider the sentence σ given by

(∃x)(∀y)(y = x∨x < y).

Then 〈N, <〉 |= σ and 〈Z, <〉 6|= σ. Thus 〈N, <〉6∼= 〈Z, <〉.

Example 19.8. 〈Z, <〉6∼= 〈Q, <〉.

Proof. Consider the sentence σ given by

(∀x)(∀y)(x < y→(∃z)(x < z∧z < y)).

Definition 19.9. Let T be a set of sentences.

1. A is a model for T iff A |= σ for every σ ∈ T .

2. Mod(T ) is the class of all models of T .

Abbreviation If E is a binary predicate symbol, then we usually write xEy instead of
Exy.

Example 19.10. Let T be the following set of sentences:

¬(∃x)(xEx)

(∀x)(∀y)(xEy→yEx).

Then Mod(T ) is the class of graphs.

Example 19.11. Let T be the following set of sentences:

¬(∃x)(xEx)

(∀x)(∀y)(∀z)((xEy∧yEz)→xEz)

(∀x)(∀y)(x = y∨xEy∨yEx)

Then Mod(T ) is the class of linear orders.

Definition 19.12. A class C of structures is axiomatizable iff there is a set T of sentences
such that C = Mod(T ). If there exists a finite set T of sentences such that C = Mod(T ),
then C is finitely axiomatizable.

Example 19.13. The class of graphs is finitely axiomatizable.
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Example 19.14. The class of infinite graphs is axiomatizable.

Proof. For each n ≥ 1 let On be the sentence

“There exist at least n elements.”

For example O3 is the sentence

(∃x)(∃y)(∃z)(x 6= y∧y 6= z∧z 6= x).

Then C = Mod(T ), where T is the following set of sentences:

¬(∃x)(xEx)

(∀x)(∀y)(xEy→yEx)

On, n ≥ 1.

Question 19.15. Is the class of infinite graphs finitely axiomatizable?

Question 19.16. Is the class of finite graphs axiomatizable?

Another application of the Compactness Theorem...

Theorem 19.17. Let T be a set of sentences in a first order language L. If T has
arbitrarily large finite models, then T has an infinite model.

Proof. For each n ≥ 1, let On be the sentence which says:

“There exist at least n elements.”

Let Σ be the set of sentences T ∪ {On | n ≥ 1}. We claim that Σ is finitely satisfiable.
Suppose Σ0 ⊆ Σ is any finite subset. Then wlog

Σ0 = T ∪ {On1 , . . . ,Ont}.

Let m = max{n1, . . . , nt}. Then there exists a finite model A0 of T such that A0 has at
least m elements. Clearly A0 satisfies Σ0. By the Compactness Theorem, there exists a
model A of Σ. Clearly A is an infinite model of T .

Corollary 19.18. The class F of finite graphs is not axiomatizable.

Proof. Suppose T is a set of sentences such that F = Mod(T ). Clearly there are
arbitrarly large finite graphs and hence T has arbitrarly large finite models. But this
means that T has an infinite model, which is a contradiction.

Corollary 19.19. The class C of infinite graphs is not finitely axiomatizable.
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Proof. Suppose that there exists a finite set T = {ϕ1, . . . , ϕn} of sentences such that
C = Mod(T ). Consider the following set T ′ of sentences.

¬(∃x)(xEx)

(∀x)(∀y)(xEy→yEx)

¬(ϕ1∧ . . .∧ϕn).

Then clearly Mod(T ′) is the class of finite graphs, which is a contradiction.

20 Valid sentences

Definition 20.1. Let Σ be a set of wffs and let ϕ be a wff. Then Σ logically im-
plies/semantically implies ϕ iff for every structure A and for every function s : V → A,
if A satisfies Σ with s, then A satisfies ϕ with s. In this case we write Σ |= ϕ.

Definition 20.2. The wff ϕ is valid iff ∅ |= ϕ; i.e., for all structures A and functions
s : V → A, A |= ϕ[s].

Example 20.3. {∀xPx} |= Pc.

Question 20.4. Suppose that Σ is an infinite set of wffs and that Σ |= ϕ. Does there
exist a finite set Σ0 ⊆ Σ such that Σ0 |= ϕ?

Answer Yes. We shall show that Σ |= ϕ iff there exists a proof of ϕ from Σ. Such a
proof will only use a finite subset Σ0 ⊆ Σ.

We now return to the syntactic aspect of first order languages. We will next define
rigorously the notion of a deduction or proof.

Notation Λ will denote the set of logical axioms. These will be defined explicitly a little
later.

eg (∀x(α→β)→(∀xα→∀xβ)).

Each logical axiom will be valid.

Definition 20.5. Let Γ be a set of wffs and ϕ a wff. A deduction of ϕ from Γ is a finite
sequence of wffs

〈α1, . . . , αn〉
such that αn = ϕ and for each 1 ≤ i ≤ n, either:

(a) αi ∈ Λ ∪ Γ; or

(b) there exist j, k < i such that αk is (αj→αi).
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Remark 20.6. In case (b), we have

〈α1, . . . , αj, . . . , (αj→αi), . . . , αi, . . . , αn〉

We say that αi follows from αj and (αj→αi) by modus ponens (MP).

Definition 20.7. ϕ is a theorem of Γ, written Γ ` ϕ, iff there exists a deduction of ϕ
from Γ.

The two main results of this course...

Theorem 20.8 (Soundness). If Γ ` ϕ, then Γ |= ϕ.

Theorem 20.9 (Completeness (Godel)). If Γ |= ϕ, then Γ ` ϕ.
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