Math 461 Compactness

19 Compactness in first order logic

Definition 19.1. Let X be a set of wifs.
(a) A satisfies 3 with s iff A = ols] for all o € 3.

(b) X is satisfiable iff there exists a structure A and a function s: V' — A such that
A satisfies ¥ with s.

(c) X is finitely satisfiable iff every finite subset of ¥ is satisfiable.
One of the deepest results of the course:

Theorem 19.2 (Compactness). Let ¥ be a set of wffs in the first order language L.
If 3 is finitely satisfiable, then ¥ is satisfiable.

Application of the Compactness Theorem Let £ be the language of arithmetic; ie
L has non-logical symbols {+, x, <,0,1}. Let

ThN = {0 | 0 is a sentence satisfied by (N;+, x, <,0,1)}.
Consider the following set > of wffs:

ThNU{z >1+...4+1 |n>1}.
—_——
n times

We claim that Y is finitely satisfiable. To see this, suppose that ¥y, C ¥ is any finite
subset; say, Yo = TU{z > 1+...+1,...,20 > 1+...+ 1}, where " C ThN. Let
—_—— —_——

ni ng
m = max{ni,...,n:} and let s: V. — N with s(z) = m + 1. Then N satisfies ¥,
with s. By the Compactness Theorem, there exists a structure A for £ and a function
s: V — A such that A satisfies ¥ with s. Thus A is a “model of artihmetic” containing
the “infinite natural number” s(z) € A.

Discussion of the order relation in A....

Now we return to the systematic development of first order logic.

Definition 19.3. Let A, B be structures for the language £. A function f: A — B is
an isomprphism iff the following conditions are satisfied.

1. f is a bijection.
2. For each n-ary predicate symbol P and any n-tuple aq,...,a, € A,
(a1, an) € PAfE (f(ar),..., flan) € PP.

3. For each constant symbol ¢, f(c*) = cB.
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4. For each n-ary function symbol A and n-tuple aq,...,a, € A,

F(Mar, .. an)) = BE(f(ar), .., f(an)).
We write A=B iff A and B are isomorphic.
Theorem 19.4. Suppose that p: A — B is an isomorphism. If o is any sentence, then
Ao iff BEo.

In order to prove the above theorem, we must prove the following more general
statement.

Theorem 19.5. Suppose that p: A — B is an isomorphism and s: V — A. Then for
any wif «
A als] iff BEalpos].
We shall make use of the following result.
Lemma 19.6. With the above hypotheses, for each term t,
p(s5(t) = (Pos)(t).
Proof. Exercise. O

Proof of Theorem 19.5. We argue by induction of the complexity of a. First suppose
that « is atomic, say Pty ...t,. Then

AE Pty t,[s] iff  (3(t),...,5(t,)) € PA
it (p(s(t )) . 9(3(ta))) € PP

it ((pos)(t » - (Fo3)(tn)) € PP
iff ):Ptl...n[goos]

Next suppose that « is =3. Then
Al -Bls] it A B[]
ift B Blpos]
iff Bl -Blpos]
A similar argument deals with the case when « is (f = 7).
Finally suppose that « is Vu3. Then

AEvYoils] it A pB[s(v]a)], forallae A
ifft B Blpos(v]a)], forallae A
ifft B B[(gos)(vle(a))], foralla e A
iff B pB[(eos)(v]b)], forallbe B
iff BEYub[pos]
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Example 19.7. (N, <)% (Z, <).
Proof. Consider the sentence o given by
(Fz)(Vy)(y = aVa <y).
Then (N, <) = 0 and (Z, <) [~ 0. Thus (N, <)% (Z, <). O
Example 19.8. (Z, <)% (Q, <).

Proof. Consider the sentence o given by

(Vo) (Vy)(x < y—(F2)(z < 2zAz < y)).

Definition 19.9. Let 7" be a set of sentences.
1. Ais a model for T iff A |= o for every o € T.
2. Mod(T) is the class of all models of T'.

Abbreviation If F is a binary predicate symbol, then we usually write zEy instead of
Exy.

Example 19.10. Let T be the following set of sentences:
—(3z)(zEx)
(Vz)(Vy)(zEy—yEx).
Then Mod(T) is the class of graphs.

Example 19.11. Let T be the following set of sentences:
—(3x)(zEx)

(Vz)(Vy)(V2)(zEyAyEz)—zEz)
(Vz)(Vy)(z = yVzEyVyEr)
Then Mod(T) is the class of linear orders.

Definition 19.12. A class C of structures is aziomatizable iff there is a set T' of sentences
such that C = Mod(T'). If there exists a finite set 7" of sentences such that C = Mod(T),
then C is finitely axiomatizable.

Example 19.13. The class of graphs is finitely axiomatizable.
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Example 19.14. The class of infinite graphs is axiomatizable.

Proof. For each n > 1 let O,, be the sentence
“There exist at least n elements.”

For example Oj is the sentence

(F2)(Fy) (32)(x # yAy # 2Az # ).
Then C = Mod(T"), where T is the following set of sentences:
—(3x)(zEx)

(Vz)(Vy)(zBy—yEx)
O,, n>1.

Question 19.15. Is the class of infinite graphs finitely axiomatizable?
Question 19.16. Is the class of finite graphs axiomatizable?
Another application of the Compactness Theorem...

Theorem 19.17. Let T be a set of sentences in a first order language L. If T has
arbitrarily large finite models, then T has an infinite model.

Proof. For each n > 1, let O,, be the sentence which says:
“There exist at least n elements.”

Let 3 be the set of sentences T'U {O,, | n > 1}. We claim that 3 is finitely satisfiable.
Suppose Xy C X is any finite subset. Then wlog

Yo=TU{O,,,...,0u}.

Let m = max{ny,...,n;}. Then there exists a finite model A of T such that 4y has at
least m elements. Clearly A satisfies >y. By the Compactness Theorem, there exists a
model A of 2. Clearly A is an infinite model of 7. O

Corollary 19.18. The class F of finite graphs is not axiomatizable.

Proof. Suppose T is a set of sentences such that F = Mod(T'). Clearly there are
arbitrarly large finite graphs and hence T' has arbitrarly large finite models. But this
means that 7" has an infinite model, which is a contradiction. O

Corollary 19.19. The class C of infinite graphs is not finitely ariomatizable.
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Proof. Suppose that there exists a finite set 7' = {®1,...,¢,} of sentences such that
C = Mod(T). Consider the following set 7" of sentences.

—(3x)(zEx)
(Vo) (Vy)(zEy—yEx)

ﬁ(@l/\ s /\‘pn)'
Then clearly Mod(T") is the class of finite graphs, which is a contradiction. ]

20 Valid sentences

Definition 20.1. Let X be a set of wifs and let ¢ be a wff. Then X logically im-
plies/semantically implies o iff for every structure A and for every function s: V' — A,
if A satisfies ¥ with s, then A satisfies ¢ with s. In this case we write ¥ = ¢.

Definition 20.2. The wif ¢ is valid iff § = ¢; i.e., for all structures A and functions
s: V—A Al ¢[s].

Example 20.3. {VzPz} |= Pc.

Question 20.4. Suppose that ¥ is an infinite set of wifs and that ¥ |= ¢. Does there
exist a finite set ¥g C ¥ such that 3y = 7

Answer Yes. We shall show that ¥ = ¢ iff there exists a proof of ¢ from ¥. Such a
proof will only use a finite subset ¥y C X.

We now return to the syntactic aspect of first order languages. We will next define
rigorously the notion of a deduction or proof.

Notation A will denote the set of logical axioms. These will be defined explicitly a little
later.
eg (Vz(a—pf)—(Vra—Vzp)).

Each logical axiom will be valid.

Definition 20.5. Let I' be a set of wifs and ¢ a wif. A deduction of ¢ from I is a finite
sequence of wifs

(o, ... o)

such that «,, = ¢ and for each 1 < i < n, either:
(a) ay € AUT; or

(b) there exist j, k < i such that oy is (a;—a;).
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Remark 20.6. In case (b), we have
(a1, .. ap, . (—=05), o . Q)
We say that «; follows from a; and (a;—«;) by modus ponens (MP).

Definition 20.7. ¢ is a theorem of ', written I' - ¢, iff there exists a deduction of ¢
from I'.

The two main results of this course...
Theorem 20.8 (Soundness). If 'k ¢, then T = ¢.

Theorem 20.9 (Completeness (Godel)). If ' = ¢, then T't .
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