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24 Meta-theorems

Now we turn to the proof of the Completeness Theorem. First we need to prove a
number of “Meta-Theorems”.

Theorem 24.1 (Generalization). If Γ ` ϕ and x doesn’t occur free in any wff of Γ,
then Γ ` ∀xϕ.

Remark 24.2. Note that if c is a constant symbol, then

{x = c} ` x = c.

However,
{x = c} 6 ` ∀x(x = c).

How do we know this? By the Soundness Theorem, it is enough to show that

{x = c} 6|= ∀x(x = c).

Proof of Generalization Theorem. We argue by induction on the minimal length n of a
deduction of ϕ from Γ that Γ ` ∀xϕ.

First suppose that n = 1. Then ϕ ∈ Γ ∪ Λ.

Case 1 Suppose that ϕ ∈ Λ. Then ∀xϕ ∈ Λ and so Γ ` ∀xϕ.

Case 2 Suppose that ϕ ∈ Γ. Then x doesn’t occur free in ϕ and so (ϕ→∀xϕ) ∈ Λ.
Hence the following is a deduction of ∀xϕ from Γ.

1. ϕ [in Γ]

2. ϕ→∀xϕ [Ax 4]

3. ∀xϕ [MP, 1, 2]

Now suppose that n > 1. Then is a deduction of minimal length, ϕ follows from
earlier wffs θ and (θ→ϕ) by MP. By induction hypothesis, Γ ` ∀xθ and Γ ` ∀x(θ→ϕ).
Hence the following is a deduction of ∀xϕ from Γ.

1. . . . deduction of ∀xθ from Γ.

n. ∀xθ

n+1. . . . deduction of ∀x(θ→ϕ) from Γ.

n+m. ∀x(θ→ϕ)

n+m+1. ∀x(θ→ϕ)→(∀xθ→∀xϕ) [Ax 3]
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n+m+2. ∀xθ→∀xϕ [MP, n+m, n+m+ 1]

n+m+3. ∀xϕ [MP, n, n+m+ 2]

Definition 24.3. {α1, . . . , αn} tautologically implies β iff

(α1→(α2→ . . . (αn→β) . . .))

is a tautology.

Theorem 24.4 (Rule T). If Γ ` α1, . . . ,Γ ` αn and {α1, . . . , αn} tautologically implies
β, the Γ ` β.

Proof. Obvious, via repeated applications of MP.

Theorem 24.5 (Deduction). If Γ ∪ {γ} ` ϕ, then Γ ` (γ→ϕ).

Proof. We argue by induction on the minimal length n of a deduction of ϕ from Γ∪{γ}.
First suppose that n = 1.

Case 1 Suppose that ϕ ∈ Γ ∪ Λ. Then the following is a deduction from Γ.

1. ϕ [in Γ ∪ Λ]

2. (ϕ→(γ→ϕ)) [Ax 1]

3. (γ→ϕ) [MP, 1, 2]

Case 2 Suppose that ϕ = γ. In this case (γ→ϕ) is a tautology and so Γ ` (γ→ϕ).
Now suppose that n > 1. Then in a deduction of minimal length ϕ follows from ear-

lier wffs θ and (θ→ϕ) by MP. By induction hypothesis, Γ ` (γ→θ) and Γ ` (γ→(θ→ϕ)).
Clearly {(γ→θ), (γ→(θ→ϕ))} tautologically implies (γ→ϕ). By Rule T, Γ ` (γ→ϕ).

Theorem 24.6 (Contraposition). Γ ∪ {ϕ} ` ¬ψ iff Γ ∪ {ψ} ` ¬ϕ.

Proof. Suppose that Γ ∪ {ϕ} ` ¬ψ. By the deduction theorem Γ ` (ϕ→¬ψ). By Rule
T, Γ ` (ψ→¬φ). Hence Γ∪{ψ} ` ψ amd Γ∪{ψ} ` (ψ→¬ϕ). By Rule T, Γ∪{γ} ` ¬ϕ.

The other direction is similar.

Theorem 24.7 (Reductio Ad Absurdum). If Γ∪ {ϕ} is inconsistent, then Γ ` ¬ϕ.

Proof. Suppose that Γ ∪ {ϕ} ` β and Γ ∪ {ϕ} ` ¬β. By the Deduction Theorem ,
Γ ` (ϕ→β) and Γ ` (ϕ→¬β). Since {(ϕ→β), (ϕ→¬β)} tautologically implies ¬ϕ, Rule
T gives Γ ` ¬ϕ.
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Remark 24.8. If Γ is inconsistent, then Γ ` α for ever wff α.

Proof. Suppose that Γ ` β and Γ ` ¬β. Clearly

(β→(¬β→α))

is a tautology. By Rule T, Γ ` α.

25 Applications: some theorems about equality

Eq 1.
` ∀x(x = x)

Proof. This is a logical axiom.

Eq 2.
` ∀x∀y(x = y→y = x)

Proof. 1. ` x = y→(x = x→y = x) [Ax 6]

2. ` x = x [Ax 5]

3. ` x = y→y = x [Rule T, 1, 2]

4. ` ∀y(x = y→y = x) [Gen, 3]

5. ` ∀x∀y(x = y→y = x) [Gen, 4]

Eq 3.
` ∀x∀y∀z(x = y→(y = z→x = z))

Proof. 1. ` y = x→(y = z→x = z) [Ax 6]

2. ` x = y→y = x [Shown in proof of Eq 2]

3. ` x = y→(y = z→x = z) [Rule T, 1, 2]

4. ` ∀x∀y∀z(x = y→(y = z→x = z)) [Gen cubed, 3]
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26 Generalization on constants

Theorem 26.1 (Generalization on constants). Assume that Γ ` ϕ and that c is a
constant symbol which doesn’t occur in Γ. Then there exists a variable y (which doesn’t
occur in ϕ) such that Γ ` ∀yϕcy.

Furthermore, there exists a deduction of ∀yϕcy from Γ in which c doesn’t occur.

Remark 26.2. Intuitively, suppose that Γ says nothing about c and that Γ ` ϕ(c).
Then Γ ` ∀yϕ(y). In other words, to prove ∀yϕ(y), let c be arbitrary and prove ϕ(c).

Remark 26.3. Suppose that Γ is a consistent set of wffs in the language L. Let L+ be
the language obtained by adding a new constant symbol c. Then Γ is still consistent in
L+.

Why? Suppose not. Then there exists a wff β in L+ such that Γ ` β∧¬β in L+. By
the above theorem, for some variable y which doesn’t occur in β,

Γ ` ∀y(βcy∧¬βcy)
via a deduction that doesn’t involve c. Since

∀y(βcy∧¬βcy)→(βcy∧¬βcy)
is a logical axiom,

Γ ` βcy∧¬βcy
in L. This implies that Γ is inconsistent in L, which is a contradiction.

Proof of Generalization on Constants. Suppose that

(∗) 〈α1, . . . , αn〉
is a deduction of ϕ from Γ. Let y be a variable which doesn’t occur in any of the αi.
We claim that

(∗∗) 〈(α1)cy, . . . , (αn〉)cy
is a deduction of ϕcy from Γ. We shall prove that, for all i ≤ n, either (αi)

c
y ∈ Γ ∪ Λ or

(αi)
c
y follows from earlier wffs in (∗∗) via MP.

Case 1 Suppose that αi ∈ Γ. Since c doesn’t occur in Γ, it follows that (αi)
c
y = αi ∈ Γ.

Case 2 Suppose that αi ∈ Λ. Then it is easily checked that (αi)
c
y ∈ Λ.

Case 3 Suppose there exist j, k < i such that αk is (αj→αi). Then (αk)
c
y is ((αj)

c
y→(αi)

c
y).

Hence (αi)
c
y follows from (αk)

c
y and (αj)

c
y by MP.

Let Φ be the finite subset of Γ which occurs in (∗∗). Then Φ ` ϕcy via a deduction
in which c doesn’t occur. By the Generalization Theorem, since y doesn’t occur free in
Φ, it follows that Φ ` ∀yϕcy via a deduction in which c doesn’t occur. It follows that
Γ ` ∀yϕcy via a deduction in which c doesn’t occur.
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Exercise 26.4. 1. Show by induction on ϕ that if y doesn’t occur in ϕ, then x is
substitutable for y in ϕxy and (ϕxy)

y
x = ϕ.

2. Find a wff ϕ such that (ϕxy)
y
x 6= ϕ.

Corollary 26.5. Suppose that Γ ` ϕxc , where c is a constant symbol that doesn’t occur
in Γ or ϕ. Then Γ ` ∀xϕ, via a deduction in which c doesn’t occur.

Proof. By the above theorem, Γ ` ∀y(ϕxc )
c
y for some variable y which doesn’t occur in ϕxc .

Since c doesn’t occur in ϕ, (ϕxc )
c
y = ϕxy . Thus Γ ` ∀yϕxy . By the exercise, the following

is a logical axiom: ∀yϕxy→ϕ. Thus ∀yϕxy ` φ. Since x doesn’t occur free in ∀yϕxy , Gen-
eralization gives that ∀yϕxy ` ∀xϕ. Hence Deduction yields that ` ∀yϕxy→∀xϕ. Since
Γ ` ∀yϕxy , Rule T gives Γ ` ∀xφ.

Theorem 26.6 (Existence of Alphabetic Variants). Let ϕ be a wff, t a term and
x a variable. Then there exists a wff ϕ′ (which differs from ϕ only in the choice of
quantified variables) such that:

(a) ϕ ` ϕ′ and ϕ′ ` ϕ.

(b) t is substitutable for x in ϕ′.

Proof Omitted

27 Completeness

Now we are ready to begin the proof of:

Theorem 27.1 (Completeness). If Γ |= ϕ, then Γ ` ϕ.

We shall base our strategy on the following observation.

Proposition 27.2. The following statements are equivalent:

(a) The Completeness Theorem: i.e. if Γ |= ϕ, then Γ ` ϕ.

(b) If Γ is a consistent set of wffs, then Γ is satisfiable.

Proof. (a) ⇒ (b)
Suppose that Γ is consistent. Then there exists a wff ϕ such that Γ 6 ` ϕ. By

Completeness, Γ 6|= ϕ. Hence there exists a structure A and a function s : V → A such
that A satisfies Γ with s and A 6|= ϕ[s]. In particular, Γ is satisfiable.

(b) ⇒ (a)
Suppose that Γ 6 ` ϕ. Applying Reductio ad Absurdum, Γ ∪ {¬ϕ} is consistent. It

follows that Γ ∪ {¬ϕ} is satisfiable and hence Γ 6|= ϕ.
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Now we prove:

Theorem 27.3 (Completeness’). If Γ is a consistent set of wffs in a countable lan-
guage L, then there exists a countable structure A and s : V → A such that A satisfies
Γ with s.

Proof. Step 1 Expand L to a larger language L+ by adding a countably infinte set of
new constant symbols. Then Γ remains consistent as a set of wffs in L+.

Proof of Step 1. Suppose not. Then there exists a wff β of L+ such that Γ ` β∧¬β in
L+. Suppose that c1, . . . , cn includes the new constants (if any) which appear in β. By
Generalization on Constants, there are variables y1, . . . , yn such that:

(a) Γ ` ∀y1 . . . ∀yn(β′∧¬β ′), where β ′ is the result of replacing each ci by yi; and

(b) the deduction doesn’t involve any new constants.

Since yi is substitutable for yi in β′, we obtain that Γ ` β ′∧¬β ′. But this means that
Γ is inconsistent in the original language L, which is a contradiction.

Step 2 (We add witnesses to existential wffs.) Let

〈ϕ1, x1〉, 〈ϕ2, x2〉, . . . , 〈ϕn, xn〉, . . .

enumerate all pairs 〈ϕ, x〉, where ϕ is a wff of L+ and x is a variable. Let θ1 be the wff

¬∀x1ϕ1→(¬ϕ1)x1
c1
,

where c1 is the first new constant which doesn’t occur in ϕ1. If n > 1, then θn is the wff

¬∀xnϕn→(¬ϕn)xncn ,

where cn is the first new constant which doesn’t occur in {ϕ1, . . . , ϕn} ∪ {θ1, . . . , θn−1}.
Let

Θ = Γ ∪ {θn | n ≥ 1}.
Claim 27.4. Θ is consistent.

Proof. Suppose not. Let n ≥ 0 be the least integer such that Γ ∪ {θ1, . . . , θn+1} is
inconsistent. By Reductio ad Absurdum,

Γ ∪ {θ1, . . . , θn} ` ¬θn+1.

Recall that θn+1 has the form
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¬∀xϕ→¬ϕxc .
By Rule T,

Γ ∪ {θ1, . . . , θn} ` ¬∀xϕ.
and

Γ ∪ {θ1, . . . , θn} ` ϕxc .
Since c doesn’t occur in Γ ∪ {θ1, . . . , θn} ∪ {ϕ}, we have that

Γ ∪ {θ1, . . . , θn} ` ∀xϕ.
But this contradicts the minimality of n, or the consistency of Γ if n = 0.

Step 3 We extend Θ to a consistent set of wffs ∆ such that for every wff ϕ of L+, either
ϕ ∈ ∆ or ¬ϕ ∈ ∆.

Proof. Let α1, α2, . . . , αn, . . . enumerate all the wffs of L+. We define inductively an
increasing sequence of consistent sets of wffs

∆0 ⊆ ∆1 ⊆ . . . ⊆ ∆n ⊆ . . .

as follows

• ∆0 = Θ

• Suppose that ∆n has been defined. If ∆n ∪ {αn+1} is consistent, then we set
∆n+1 = ∆ ∪ {αn+1}.
Otherwise, if ∆n ∪ {αn+1} is inconsistent, then ∆ ` ¬αn+1 so we can set ∆n+1 =
∆ ∪ {¬αn+1}.

Finally let ∆ = ∪n≥0∆n. Clearly ∆ satisfies our requirements.

Notice that ∆ is deductively closed; i.e. if ∆ ` ϕ, then ϕ ∈ ∆. Otherwise, ¬ϕ ∈ ∆
and so ∆ ` ϕ and ∆ ` ¬ϕ, which contradicts the consistency of ∆.

Step 4 For each of the following wffs ϕ, ∆ ` ϕ and so ϕ ∈ ∆.

Eq 1 ∀x(x = x).

Eq 2 ∀x∀y(x = y→y = x).

Eq 3 ∀x∀y∀z((x = y∧y = z)→x = z).
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Eq 4 For each n-ary predicate symbol P

∀x1 . . . ∀xn∀y1 . . . ∀yn(x1 = y1∧ . . .∧xn = yn)→(Px1 . . . xn↔Py1 . . . yn)

Eq 5 For each n-ary function symbol f

∀x1 . . . ∀xn∀y1 . . . ∀yn(x1 = y1∧ . . .∧xn = yn)→(fx1 . . . xn = fy1 . . . yn)

Similarly, since ∆ is deductively closed and ∀x∀y(x = y→y = x) ∈ ∆, if t1, t2 are
any terms, then (t1 = t2→t2 = t1) ∈ ∆ etc..

Step 5 We construct a structure A for L+ as follows.
Let T be the set of terms in L+. Define a relation E on T by

t1Et2 iff (t1 = t2) ∈ ∆.

Claim 27.5. E is an equivalence relation.

Proof. Suppose that t ∈ T . Then (t = t) ∈ ∆ and so tEt. Thus E is reflexive.
Next suppose that t1Et2. Then (t1 = t2) ∈ ∆. Since (t1 = t2→t2 = t1) ∈ ∆, it

follows that (t2 = t1) ∈ ∆. Thus t2Et1 and so E is symmetric.
Similarly E is transitive.

Definition 27.6. For each t ∈ T , let

[t] = {s ∈ T | tEs}.

Then we define
A = {[t] | t ∈ T}.

Definition 27.7. For each n-ary predicate symbol P , we define an n-ary relation PA

on A by
〈[t1], . . . , [tn]〉 ∈ PA iff Pt1 . . . tn ∈ ∆.

Claim 27.8. PA is well-defined.

Proof. Suppose that [s1] = [t1], . . . , [sn] = [tn]. We must show that

Ps1 . . . sn ∈ ∆ iff Pt1 . . . tn ∈ ∆.

By assumption, (s1 = t1) ∈ ∆, . . . , (sn = tn) ∈ ∆. Since

[(s1 = t1∧ . . .∧sn = tn)→(Ps1 . . . sn↔Pt1 . . . tn)] ∈ ∆,

the result follows.
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Definition 27.9. For each constant symbol c, cA = [c].

Definition 27.10. For each n-ary function symbol f , we define an n-ary operation
fA : An → A by

fA([t1], . . . , [tn]) = [ft1 . . . tn].

Claim 27.11. fA is well-defined.

Proof. Similar.

Finally we define s : V → A by s(x) = [x].

Claim 27.12 (Target). For every wff ϕ of L+,

A |= ϕ[s] iff ϕ ∈ ∆.

We shall make use of the following result.

Claim 27.13. For each term t ∈ T , s̄(t) = [t].

Proof. By definition, the result holds when t is a variable or a constant symbol. Suppose
that t is ft1 . . . tn. Then by induction hypothesis, s̄(t1) = [t1], . . . , s̄(tn) = [tn]. Hence

s̄(ft1 . . . tn) = fA(s̄(t1), . . . , s̄(t1))

= fA([t1], . . . , [t1])

= [ft1, . . . , t1]

Proof of Target Claim. We argue by induction on the complexity of ϕ. First suppose
that ϕ is atomic.

Case 1 Suppose that ϕ is t1 = t2. Then

A |= (t1 = t2)[s] iff s̄(t1) = s̄(t2)

iff [t1] = [t2]

iff (t1 = t2) ∈ ∆

Case 2 Suppose that ϕ is Pt1 . . . tn. Then

A |= Pt1 . . . tn[s] iff 〈s̄(t1), . . . , s̄(tn)〉 ∈ PA
iff 〈[t1], . . . , [tn]〉 ∈ PA
iff Pt1 . . . tn ∈ ∆

Next we consider the case when ϕ isn’t atomic.
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Case 3 Suppose that ϕ is ¬ψ. Then

A |= ¬ψ[s] iff A 6|= ψ[s]

iff ψ/∈∆

iff ¬ψ ∈ ∆

Case 4 The case where ϕ is (θ→ψ) is similar.

Case 5 Finally suppose that ϕ is ∀xψ. We shall make use of the following result.

Lemma 27.14 (Substitution). If the term t is substitutable for x in ψ, then

A |= ψxt [s] iff A |= ψ[s(x|s̄(t))].

Proof. Omitted.

Recall that ϕ is ∀xψ. By construction, for some constant c,

(¬∀ψ→¬ψxc ) ∈ ∆ (*)

First suppose that A |= ∀xψ[s]. Then, in particular, A |= ψ[s(x|[c])] and so A |=
ψ[s(x|s̄(c))]. By the Substitution Lemma, A |= ψxc [s]. Hence by induction hypothesis,
ψxc ∈ ∆ and so ¬ψxc /∈∆. By (*), ¬∀xψ/∈∆ and so ∀xψ ∈ ∆.

Conversely, suppose that A 6|= ∀xψ[s]. Then there exists a term t ∈ T such that
A 6|= ψ[s(x|[t])]. Thus A 6|= ψ[s(x|s̄(t))]. Let ψ ′ be an alphabetic variant of ψ such that
t is substitutable for x in ψ′. Then A 6|= ψ′[s(x|s̄(t))]. By the Substitution Lemma,
A 6|= (ψ′)xt [s]. By induction hypothesis, (ψ′)xt /∈∆. Since t is substitutable for x in ψ′ is
follows that (∀xψ′→(ψ′)xt ) ∈ ∆. Hence ∀xψ′ /∈∆ and so ∀xψ/∈∆.

Finally letA0 be the structure for L obtained fromA by forgetting the interpretations
of the new constant symbols. Then A0 satisfies Γ with s.

This completes the proof of the Completeness Theorem.

Corollary 27.15. Γ |= ϕ iff Γ ` ϕ.

Theorem 27.16. Let Γ be a set of wffs in a countable first order language. If Γ is
finitely satisfiable, then Γ is satisfiable in some countable structure.

Proof. Suppose that every finite subset Γ0 ⊆ Γ is satisfiable. By Soundness, every finite
subset Γ0 ⊆ is consistent. Hence Γ is consistent. By Completeness, Γ is satisfiable in
some countable structure.

Theorem 27.17. Let T be a set of sentences in a first order language L. If the class
C = Mod(T ) is finitely axiomatizable, then there exists a finite subset T0 ⊆ T such that
C = Mod(T0).
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Proof. Suppose that C = Mod(T ) is finitely axiomatizable. Then there exists a sentence
σ such that C = Mod(σ). Since Mod(T ) = Mod(σ), it follows that T |= σ. By the
Completeness Theorem, T ` σ and hence there exists a finite subset T0 ⊆ T such that
T0 ` σ. By Soundness, T0 |= σ. Hence

C = Mod(T ) ⊆ Mod(T0) ⊆ Mod(σ) = C

and so C = Mod(T0).

Definition 27.18. Let A, B be structures for the first-order language L. Then A and
B are elementarily equivalent, written A ≡ B, iff for every sentence σ of L,

A |= σ iff B |= σ.

Remark 27.19. If A∼= B, then A ≡ B. Howevery, the converse does not hold, e.g. con-
sider a nonstandard model of arithmetic.

Definition 27.20. A consistent set of sentences T is said to be complete iff for every
sentence σ, either T ` σ or T ` ¬σ.

Example 27.21. Let A be any structure and let

Th(A) = {σ | σ is a sentence such that A |= σ}.

Then Th(A) is a complete theory.

Theorem 27.22. If T is a complete theory in the first-order language L and A, B are
models of T , then A ≡ B.

Proof. Let σ be any sentence. Then either T ` σ or T ` ¬σ. Suppose that T ` σ. By
Soundness, T |= σ. Hence A |= σ and B |= σ. Similarly if T ` ¬σ, then A |= ¬σ and
B |= ¬σ.

Theorem 27.23 (Los-Vaught). Let T be a consistent theory in a countable language
L. Suppose that

(a) T has no finite models.

(b) If A, B are countably infinite models of T , then A ∼= B.

Then T is complete.

Proof. Suppose not. Then there exists a sentence σ such that T 6 ` σ and T 6 ` ¬σ. Hence
T ∪ {¬σ} and T ∪ {σ} are both consistent. By Completeness, there exists countable
structures A and B such that A |= T ∪ {¬σ} and B |= T ∪ {σ}. By (a), A and B must
be countably infinite. Hence, by (b), A ∼= B. But this contradicts the fact that A |= ¬σ
and B |= σ.
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Corollary 27.24. Let TDLO be the theory of dense linear orders without endpoints.
Then TDLO is complete.

Proof. Clearly TDLO has no finite models. Also, if A, B are countable dense linear orders
without endopints, then A∼= B. Hence TDLO is complete.

Corollary 27.25. 〈Q, <〉 ≡ 〈R, <〉.

Proof. 〈Q, <〉 and 〈R, <〉 are both models of the complete theory TDLO.

The rationals 〈Q, <〉 are a countable linear order in which “every possible finite
configuration is realized.”
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