24 Meta-theorems

Now we turn to the proof of the Completeness Theorem. First we need to prove a number of "Meta-Theorems".

Theorem 24.1 (Generalization). If $\Gamma \vdash \varphi$ and x doesn't occur free in any wff of Γ , then $\Gamma \vdash \forall x \varphi$.

Remark 24.2. Note that if c is a constant symbol, then

$$\{x = c\} \vdash x = c.$$

However,

$$\{x = c\} \not\vdash \forall x(x = c).$$

How do we know this? By the Soundness Theorem, it is enough to show that

$$\{x = c\} \not\models \forall x(x = c).$$

Proof of Generalization Theorem. We argue by induction on the minimal length n of a deduction of φ from Γ that $\Gamma \vdash \forall x \varphi$.

First suppose that n = 1. Then $\varphi \in \Gamma \cup \Lambda$.

Case 1 Suppose that $\varphi \in \Lambda$. Then $\forall x \varphi \in \Lambda$ and so $\Gamma \vdash \forall x \varphi$.

Case 2 Suppose that $\varphi \in \Gamma$. Then x doesn't occur free in φ and so $(\varphi \rightarrow \forall x \varphi) \in \Lambda$. Hence the following is a deduction of $\forall x \varphi$ from Γ .

- 1. φ [in Γ]
- 2. $\varphi \rightarrow \forall x \varphi$ [Ax 4]
- 3. $\forall x \varphi$ [MP, 1, 2]

Now suppose that n > 1. Then is a deduction of minimal length, φ follows from earlier wffs θ and $(\theta \rightarrow \varphi)$ by MP. By induction hypothesis, $\Gamma \vdash \forall x \theta$ and $\Gamma \vdash \forall x (\theta \rightarrow \varphi)$. Hence the following is a deduction of $\forall x \varphi$ from Γ .

- 1. ... deduction of $\forall x \theta$ from Γ .
- n. $\forall x \theta$
- n+1. ... deduction of $\forall x(\theta \rightarrow \varphi)$ from Γ .
- n+m. $\forall x(\theta \rightarrow \varphi)$

n+m+1. $\forall x(\theta \rightarrow \varphi) \rightarrow (\forall x\theta \rightarrow \forall x\varphi)$ [Ax 3]

n+m+2. $\forall x \theta \rightarrow \forall x \varphi$ [MP, n + m, n + m + 1]

n+m+3. $\forall x \varphi [MP, n, n+m+2]$

Definition 24.3. $\{\alpha_1, \ldots, \alpha_n\}$ tautologically implies β iff

$$(\alpha_1 \rightarrow (\alpha_2 \rightarrow \dots (\alpha_n \rightarrow \beta) \dots))$$

is a tautology.

Theorem 24.4 (Rule T). *If* $\Gamma \vdash \alpha_1, \ldots, \Gamma \vdash \alpha_n$ *and* $\{\alpha_1, \ldots, \alpha_n\}$ *tautologically implies* β *, the* $\Gamma \vdash \beta$ *.*

Proof. Obvious, via repeated applications of MP.

Theorem 24.5 (Deduction). If $\Gamma \cup \{\gamma\} \vdash \varphi$, then $\Gamma \vdash (\gamma \rightarrow \varphi)$.

Proof. We argue by induction on the minimal length n of a deduction of φ from $\Gamma \cup \{\gamma\}$. First suppose that n = 1.

Case 1 Suppose that $\varphi \in \Gamma \cup \Lambda$. Then the following is a deduction from Γ .

- 1. φ [in $\Gamma \cup \Lambda$]
- 2. $(\varphi \rightarrow (\gamma \rightarrow \varphi))$ [Ax 1]
- 3. $(\gamma \rightarrow \varphi)$ [MP, 1, 2]

Case 2 Suppose that $\varphi = \gamma$. In this case $(\gamma \rightarrow \varphi)$ is a tautology and so $\Gamma \vdash (\gamma \rightarrow \varphi)$.

Now suppose that n > 1. Then in a deduction of minimal length φ follows from earlier wffs θ and $(\theta \rightarrow \varphi)$ by MP. By induction hypothesis, $\Gamma \vdash (\gamma \rightarrow \theta)$ and $\Gamma \vdash (\gamma \rightarrow (\theta \rightarrow \varphi))$. Clearly $\{(\gamma \rightarrow \theta), (\gamma \rightarrow (\theta \rightarrow \varphi))\}$ tautologically implies $(\gamma \rightarrow \varphi)$. By Rule T, $\Gamma \vdash (\gamma \rightarrow \varphi)$.

Theorem 24.6 (Contraposition). $\Gamma \cup \{\varphi\} \vdash \neg \psi$ *iff* $\Gamma \cup \{\psi\} \vdash \neg \varphi$.

Proof. Suppose that $\Gamma \cup \{\varphi\} \vdash \neg \psi$. By the deduction theorem $\Gamma \vdash (\varphi \rightarrow \neg \psi)$. By Rule T, $\Gamma \vdash (\psi \rightarrow \neg \phi)$. Hence $\Gamma \cup \{\psi\} \vdash \psi$ and $\Gamma \cup \{\psi\} \vdash (\psi \rightarrow \neg \varphi)$. By Rule T, $\Gamma \cup \{\gamma\} \vdash \neg \varphi$. The other direction is similar.

Theorem 24.7 (Reductio Ad Absurdum). If $\Gamma \cup \{\varphi\}$ is inconsistent, then $\Gamma \vdash \neg \varphi$.

Proof. Suppose that $\Gamma \cup \{\varphi\} \vdash \beta$ and $\Gamma \cup \{\varphi\} \vdash \neg \beta$. By the Deduction Theorem , $\Gamma \vdash (\varphi \rightarrow \beta)$ and $\Gamma \vdash (\varphi \rightarrow \neg \beta)$. Since $\{(\varphi \rightarrow \beta), (\varphi \rightarrow \neg \beta)\}$ tautologically implies $\neg \varphi$, Rule T gives $\Gamma \vdash \neg \varphi$.

2006/04/17

Remark 24.8. If Γ is inconsistent, then $\Gamma \vdash \alpha$ for ever wff α .

Proof. Suppose that $\Gamma \vdash \beta$ and $\Gamma \vdash \neg \beta$. Clearly

$$(\beta \rightarrow (\neg \beta \rightarrow \alpha))$$

is a tautology. By Rule T, $\Gamma \vdash \alpha$.

25 Applications: some theorems about equality

Eq 1.

$$\vdash \forall x(x=x)$$

Proof. This is a logical axiom.

Eq 2. $\vdash \forall x \forall y (x = y \rightarrow y = x)$ Proof. 1. $\vdash x = y \rightarrow (x = x \rightarrow y = x) \text{ [Ax 6]}$ 2. $\vdash x = x \text{ [Ax 5]}$ 3. $\vdash x = y \rightarrow y = x \text{ [Rule T, 1, 2]}$ 4. $\vdash \forall y (x = y \rightarrow y = x) \text{ [Gen, 3]}$ 5. $\vdash \forall x \forall y (x = y \rightarrow y = x) \text{ [Gen, 4]}$

Eq 3.

 $\vdash \forall x \forall y \forall z (x = y \rightarrow (y = z \rightarrow x = z))$

Proof. 1.
$$\vdash y = x \rightarrow (y = z \rightarrow x = z)$$
 [Ax 6]
2. $\vdash x = y \rightarrow y = x$ [Shown in proof of Eq 2]

- 3. $\vdash x = y \rightarrow (y = z \rightarrow x = z)$ [Rule T, 1, 2]
- 4. $\vdash \forall x \forall y \forall z (x = y \rightarrow (y = z \rightarrow x = z))$ [Gen cubed, 3]

26 Generalization on constants

Theorem 26.1 (Generalization on constants). Assume that $\Gamma \vdash \varphi$ and that c is a constant symbol which doesn't occur in Γ . Then there exists a variable y (which doesn't occur in φ) such that $\Gamma \vdash \forall y \varphi_u^c$.

Furthermore, there exists a deduction of $\forall y \varphi_{y}^{c}$ from Γ in which c doesn't occur.

Remark 26.2. Intuitively, suppose that Γ says nothing about c and that $\Gamma \vdash \varphi(c)$. Then $\Gamma \vdash \forall y \varphi(y)$. In other words, to prove $\forall y \varphi(y)$, let c be arbitrary and prove $\varphi(c)$.

Remark 26.3. Suppose that Γ is a consistent set of wffs in the language \mathcal{L} . Let \mathcal{L}^+ be the language obtained by adding a new constant symbol c. Then Γ is still consistent in \mathcal{L}^+ .

Why? Suppose not. Then there exists a wff β in \mathcal{L}^+ such that $\Gamma \vdash \beta \land \neg \beta$ in \mathcal{L}^+ . By the above theorem, for some variable y which doesn't occur in β ,

$$\Gamma \vdash \forall y (\beta_y^c \land \neg \beta_y^c)$$

via a deduction that doesn't involve c. Since

$$\forall y (\beta_y^c \land \neg \beta_y^c) \rightarrow (\beta_y^c \land \neg \beta_y^c)$$

is a logical axiom,

$$\Gamma \vdash \beta_y^c \land \neg \beta_y^c$$

in \mathcal{L} . This implies that Γ is inconsistent in \mathcal{L} , which is a contradiction.

Proof of Generalization on Constants. Suppose that

(*)
$$\langle \alpha_1, \ldots, \alpha_n \rangle$$

is a deduction of φ from Γ . Let y be a variable which doesn't occur in any of the α_i . We claim that

(**)
$$\langle (\alpha_1)_y^c, \ldots, (\alpha_n \rangle)_y^c$$

is a deduction of φ_y^c from Γ . We shall prove that, for all $i \leq n$, either $(\alpha_i)_y^c \in \Gamma \cup \Lambda$ or $(\alpha_i)_y^c$ follows from earlier wffs in (**) via MP.

Case 1 Suppose that $\alpha_i \in \Gamma$. Since c doesn't occur in Γ , it follows that $(\alpha_i)_y^c = \alpha_i \in \Gamma$.

Case 2 Suppose that $\alpha_i \in \Lambda$. Then it is easily checked that $(\alpha_i)_y^c \in \Lambda$.

Case 3 Suppose there exist j, k < i such that α_k is $(\alpha_j \rightarrow \alpha_i)$. Then $(\alpha_k)_y^c$ is $((\alpha_j)_y^c \rightarrow (\alpha_i)_y^c)$. Hence $(\alpha_i)_y^c$ follows from $(\alpha_k)_y^c$ and $(\alpha_j)_y^c$ by MP.

Let Φ be the finite subset of Γ which occurs in (**). Then $\Phi \vdash \varphi_y^c$ via a deduction in which c doesn't occur. By the Generalization Theorem, since y doesn't occur free in Φ , it follows that $\Phi \vdash \forall y \varphi_y^c$ via a deduction in which c doesn't occur. It follows that $\Gamma \vdash \forall y \varphi_y^c$ via a deduction in which c doesn't occur. \Box

2006/04/17

- **Exercise 26.4.** 1. Show by induction on φ that if y doesn't occur in φ , then x is substitutable for y in φ_y^x and $(\varphi_y^x)_x^y = \varphi$.
 - 2. Find a wff φ such that $(\varphi_y^x)_x^y \neq \varphi$.

Corollary 26.5. Suppose that $\Gamma \vdash \varphi_c^x$, where c is a constant symbol that doesn't occur in Γ or φ . Then $\Gamma \vdash \forall x \varphi$, via a deduction in which c doesn't occur.

Proof. By the above theorem, $\Gamma \vdash \forall y (\varphi_c^x)_y^c$ for some variable y which doesn't occur in φ_c^x . Since c doesn't occur in φ , $(\varphi_c^x)_y^c = \varphi_y^x$. Thus $\Gamma \vdash \forall y \varphi_y^x$. By the exercise, the following is a logical axiom: $\forall y \varphi_y^x \rightarrow \varphi$. Thus $\forall y \varphi_y^x \vdash \phi$. Since x doesn't occur free in $\forall y \varphi_y^x$, Generalization gives that $\forall y \varphi_y^x \vdash \forall x \varphi$. Hence Deduction yields that $\vdash \forall y \varphi_y^x \rightarrow \forall x \varphi$. Since $\Gamma \vdash \forall y \varphi_y^x$, Rule T gives $\Gamma \vdash \forall x \phi$.

Theorem 26.6 (Existence of Alphabetic Variants). Let φ be a wff, t a term and x a variable. Then there exists a wff φ' (which differs from φ only in the choice of quantified variables) such that:

(a)
$$\varphi \vdash \varphi'$$
 and $\varphi' \vdash \varphi$.

(b) t is substitutable for x in φ' .

Proof Omitted

27 Completeness

Now we are ready to begin the proof of:

Theorem 27.1 (Completeness). *If* $\Gamma \models \varphi$ *, then* $\Gamma \vdash \varphi$ *.*

We shall base our strategy on the following observation.

Proposition 27.2. The following statements are equivalent:

- (a) The Completeness Theorem: i.e. if $\Gamma \models \varphi$, then $\Gamma \vdash \varphi$.
- (b) If Γ is a consistent set of wffs, then Γ is satisfiable.

Proof. (a) \Rightarrow (b)

Suppose that Γ is consistent. Then there exists a wff φ such that $\Gamma \not\models \varphi$. By Completeness, $\Gamma \not\models \varphi$. Hence there exists a structure \mathcal{A} and a function $s \colon V \to A$ such that \mathcal{A} satisfies Γ with s and $\mathcal{A} \not\models \varphi[s]$. In particular, Γ is satisfiable.

 $(b) \Rightarrow (a)$

Suppose that $\Gamma \not\models \varphi$. Applying Reductio ad Absurdum, $\Gamma \cup \{\neg\varphi\}$ is consistent. It follows that $\Gamma \cup \{\neg\varphi\}$ is satisfiable and hence $\Gamma \not\models \varphi$.

Now we prove:

Theorem 27.3 (Completeness'). If Γ is a consistent set of wffs in a countable language \mathcal{L} , then there exists a countable structure \mathcal{A} and $s: V \to A$ such that \mathcal{A} satisfies Γ with s.

Proof. Step 1 Expand \mathcal{L} to a larger language \mathcal{L}^+ by adding a countably infinite set of new constant symbols. Then Γ remains consistent as a set of wffs in \mathcal{L}^+ .

Proof of Step 1. Suppose not. Then there exists a wff β of \mathcal{L}^+ such that $\Gamma \vdash \beta \land \neg \beta$ in \mathcal{L}^+ . Suppose that c_1, \ldots, c_n includes the new constants (if any) which appear in β . By Generalization on Constants, there are variables y_1, \ldots, y_n such that:

- (a) $\Gamma \vdash \forall y_1 \dots \forall y_n (\beta' \land \neg \beta')$, where β' is the result of replacing each c_i by y_i ; and
- (b) the deduction doesn't involve any new constants.

Since y_i is substitutable for y_i in β' , we obtain that $\Gamma \vdash \beta' \land \neg \beta'$. But this means that Γ is inconsistent in the original language \mathcal{L} , which is a contradiction.

Step 2 (We add witnesses to existential wffs.) Let

$$\langle \varphi_1, x_1 \rangle, \langle \varphi_2, x_2 \rangle, \dots, \langle \varphi_n, x_n \rangle, \dots$$

enumerate all pairs $\langle \varphi, x \rangle$, where φ is a wff of \mathcal{L}^+ and x is a variable. Let θ_1 be the wff

$$\neg \forall x_1 \varphi_1 \rightarrow (\neg \varphi_1)_{c_1}^{x_1},$$

where c_1 is the first new constant which doesn't occur in φ_1 . If n > 1, then θ_n is the wff

$$\neg \forall x_n \varphi_n \rightarrow (\neg \varphi_n)_{c_n}^{x_n},$$

where c_n is the first new constant which doesn't occur in $\{\varphi_1, \ldots, \varphi_n\} \cup \{\theta_1, \ldots, \theta_{n-1}\}$. Let

$$\Theta = \Gamma \cup \{\theta_n \mid n \ge 1\}.$$

Claim 27.4. Θ is consistent.

Proof. Suppose not. Let $n \ge 0$ be the least integer such that $\Gamma \cup \{\theta_1, \ldots, \theta_{n+1}\}$ is inconsistent. By Reductio ad Absurdum,

$$\Gamma \cup \{\theta_1, \ldots, \theta_n\} \vdash \neg \theta_{n+1}.$$

Recall that θ_{n+1} has the form

2006/04/17

$$\neg \forall x \varphi \rightarrow \neg \varphi_c^x.$$

By Rule T,

$$\Gamma \cup \{\theta_1, \ldots, \theta_n\} \vdash \neg \forall x \varphi.$$

and

$$\Gamma \cup \{\theta_1, \ldots, \theta_n\} \vdash \varphi_c^x$$

Since c doesn't occur in $\Gamma \cup \{\theta_1, \ldots, \theta_n\} \cup \{\varphi\}$, we have that

$$\Gamma \cup \{\theta_1, \ldots, \theta_n\} \vdash \forall x \varphi.$$

But this contradicts the minimality of n, or the consistency of Γ if n = 0.

Step 3 We extend Θ to a consistent set of wffs Δ such that for every wff φ of \mathcal{L}^+ , either $\varphi \in \Delta$ or $\neg \varphi \in \Delta$.

Proof. Let $\alpha_1, \alpha_2, \ldots, \alpha_n, \ldots$ enumerate all the wffs of \mathcal{L}^+ . We define inductively an increasing sequence of consistent sets of wffs

$$\Delta_0 \subseteq \Delta_1 \subseteq \ldots \subseteq \Delta_n \subseteq \ldots$$

as follows

- $\Delta_0 = \Theta$
- Suppose that Δ_n has been defined. If $\Delta_n \cup \{\alpha_{n+1}\}$ is consistent, then we set $\Delta_{n+1} = \Delta \cup \{\alpha_{n+1}\}.$

Otherwise, if $\Delta_n \cup \{\alpha_{n+1}\}$ is inconsistent, then $\Delta \vdash \neg \alpha_{n+1}$ so we can set $\Delta_{n+1} = \Delta \cup \{\neg \alpha_{n+1}\}.$

Finally let $\Delta = \bigcup_{n \ge 0} \Delta_n$. Clearly Δ satisfies our requirements.

Notice that Δ is deductively closed; *i.e.* if $\Delta \vdash \varphi$, then $\varphi \in \Delta$. Otherwise, $\neg \varphi \in \Delta$ and so $\Delta \vdash \varphi$ and $\Delta \vdash \neg \varphi$, which contradicts the consistency of Δ .

Step 4 For each of the following wffs φ , $\Delta \vdash \varphi$ and so $\varphi \in \Delta$.

Eq 1 $\forall x(x = x).$

Eq 2 $\forall x \forall y (x = y \rightarrow y = x).$

Eq 3
$$\forall x \forall y \forall z ((x = y \land y = z) \rightarrow x = z))$$

2006/04/17

Eq 4 For each n-ary predicate symbol P

$$\forall x_1 \dots \forall x_n \forall y_1 \dots \forall y_n (x_1 = y_1 \land \dots \land x_n = y_n) \rightarrow (Px_1 \dots x_n \leftrightarrow Py_1 \dots y_n)$$

Eq 5 For each n-ary function symbol f

$$\forall x_1 \dots \forall x_n \forall y_1 \dots \forall y_n (x_1 = y_1 \land \dots \land x_n = y_n) \rightarrow (fx_1 \dots x_n = fy_1 \dots y_n)$$

Similarly, since Δ is deductively closed and $\forall x \forall y (x = y \rightarrow y = x) \in \Delta$, if t_1, t_2 are any terms, then $(t_1 = t_2 \rightarrow t_2 = t_1) \in \Delta$ etc..

Step 5 We construct a structure \mathcal{A} for \mathcal{L}^+ as follows.

Let T be the set of terms in \mathcal{L}^+ . Define a relation E on T by

$$t_1 E t_2$$
 iff $(t_1 = t_2) \in \Delta$.

Claim 27.5. *E* is an equivalence relation.

Proof. Suppose that $t \in T$. Then $(t = t) \in \Delta$ and so tEt. Thus E is reflexive.

Next suppose that t_1Et_2 . Then $(t_1 = t_2) \in \Delta$. Since $(t_1 = t_2 \rightarrow t_2 = t_1) \in \Delta$, it follows that $(t_2 = t_1) \in \Delta$. Thus t_2Et_1 and so E is symmetric.

Similarly E is transitive.

Definition 27.6. For each $t \in T$, let

$$[t] = \{s \in T \mid tEs\}.$$

Then we define

$$A = \{ [t] \mid t \in T \}.$$

Definition 27.7. For each *n*-ary predicate symbol P, we define an *n*-ary relation $P^{\mathcal{A}}$ on A by

$$\langle [t_1], \ldots, [t_n] \rangle \in P^{\mathcal{A}} \text{ iff } Pt_1 \ldots t_n \in \Delta.$$

Claim 27.8. $P^{\mathcal{A}}$ is well-defined.

Proof. Suppose that $[s_1] = [t_1], \ldots, [s_n] = [t_n]$. We must show that

$$Ps_1 \dots s_n \in \Delta$$
 iff $Pt_1 \dots t_n \in \Delta$.

By assumption, $(s_1 = t_1) \in \Delta, \ldots, (s_n = t_n) \in \Delta$. Since

$$[(s_1 = t_1 \land \ldots \land s_n = t_n) \rightarrow (Ps_1 \ldots s_n \leftrightarrow Pt_1 \ldots t_n)] \in \Delta,$$

the result follows.

2006/04/17

Definition 27.9. For each constant symbol $c, c^{\mathcal{A}} = [c]$.

Definition 27.10. For each *n*-ary function symbol f, we define an *n*-ary operation $f^{\mathcal{A}} \colon A^n \to A$ by

$$f^{\mathcal{A}}([t_1],\ldots,[t_n]) = [ft_1\ldots t_n].$$

Claim 27.11. $f^{\mathcal{A}}$ is well-defined.

Proof. Similar.

Finally we define $s \colon V \to A$ by s(x) = [x].

Claim 27.12 (Target). For every wff φ of \mathcal{L}^+ ,

$$\mathcal{A} \models \varphi[s] \text{ iff } \varphi \in \Delta.$$

We shall make use of the following result.

Claim 27.13. For each term $t \in T$, $\bar{s}(t) = [t]$.

Proof. By definition, the result holds when t is a variable or a constant symbol. Suppose that t is $ft_1 \ldots t_n$. Then by induction hypothesis, $\bar{s}(t_1) = [t_1], \ldots, \bar{s}(t_n) = [t_n]$. Hence

$$\bar{s}(ft_1 \dots t_n) = f^{\mathcal{A}}(\bar{s}(t_1), \dots, \bar{s}(t_1))$$
$$= f^{\mathcal{A}}([t_1], \dots, [t_1])$$
$$= [ft_1, \dots, t_1]$$

Proof of Target Claim. We argue by induction on the complexity of φ . First suppose that φ is atomic.

Case 1 Suppose that φ is $t_1 = t_2$. Then

$$\mathcal{A} \models (t_1 = t_2)[s] \quad \text{iff} \quad \bar{s}(t_1) = \bar{s}(t_2)$$
$$\text{iff} \quad [t_1] = [t_2]$$
$$\text{iff} \quad (t_1 = t_2) \in \Delta$$

Case 2 Suppose that φ is $Pt_1 \dots t_n$. Then

$$\mathcal{A} \models Pt_1 \dots t_n[s] \quad \text{iff} \quad \langle \bar{s}(t_1), \dots, \bar{s}(t_n) \rangle \in P^{\mathcal{A}}$$
$$\text{iff} \quad \langle [t_1], \dots, [t_n] \rangle \in P^{\mathcal{A}}$$
$$\text{iff} \quad Pt_1 \dots t_n \in \Delta$$

Next we consider the case when φ isn't atomic.

2006/04/17

Case 3 Suppose that φ is $\neg \psi$. Then

$$\begin{array}{lll} \mathcal{A} \models \neg \psi[s] & \text{iff} & \mathcal{A} \not\models \psi[s] \\ & \text{iff} & \psi \notin \Delta \\ & \text{iff} & \neg \psi \in \Delta \end{array}$$

Case 4 The case where φ is $(\theta \rightarrow \psi)$ is similar.

Case 5 Finally suppose that φ is $\forall x\psi$. We shall make use of the following result.

Lemma 27.14 (Substitution). If the term t is substitutable for x in ψ , then

$$\mathcal{A} \models \psi_t^x[s] \quad iff \quad \mathcal{A} \models \psi[s(x|\bar{s}(t))].$$

Proof. Omitted.

Recall that φ is $\forall x\psi$. By construction, for some constant c,

$$(\neg \forall \psi \rightarrow \neg \psi_c^x) \in \Delta \quad (*)$$

First suppose that $\mathcal{A} \models \forall x \psi[s]$. Then, in particular, $\mathcal{A} \models \psi[s(x|[c])]$ and so $\mathcal{A} \models \psi[s(x|\bar{s}(c))]$. By the Substitution Lemma, $\mathcal{A} \models \psi_c^x[s]$. Hence by induction hypothesis, $\psi_c^x \in \Delta$ and so $\neg \psi_c^x \notin \Delta$. By (*), $\neg \forall x \psi \notin \Delta$ and so $\forall x \psi \in \Delta$.

Conversely, suppose that $\mathcal{A} \not\models \forall x \psi[s]$. Then there exists a term $t \in T$ such that $\mathcal{A} \not\models \psi[s(x|[t])]$. Thus $\mathcal{A} \not\models \psi[s(x|\bar{s}(t))]$. Let ψ' be an alphabetic variant of ψ such that t is substitutable for x in ψ' . Then $\mathcal{A} \not\models \psi'[s(x|\bar{s}(t))]$. By the Substitution Lemma, $\mathcal{A} \not\models (\psi')_t^x[s]$. By induction hypothesis, $(\psi')_t^x \notin \Delta$. Since t is substitutable for x in ψ' is follows that $(\forall x \psi' \rightarrow (\psi')_t^x) \in \Delta$. Hence $\forall x \psi' \notin \Delta$ and so $\forall x \psi \notin \Delta$.

Finally let \mathcal{A}_0 be the structure for \mathcal{L} obtained from \mathcal{A} by forgetting the interpretations of the new constant symbols. Then \mathcal{A}_0 satisfies Γ with s.

This completes the proof of the Completeness Theorem.

Corollary 27.15. $\Gamma \models \varphi$ iff $\Gamma \vdash \varphi$.

Theorem 27.16. Let Γ be a set of wffs in a countable first order language. If Γ is finitely satisfiable, then Γ is satisfiable in some countable structure.

Proof. Suppose that every finite subset $\Gamma_0 \subseteq \Gamma$ is satisfiable. By Soundness, every finite subset $\Gamma_0 \subseteq$ is consistent. Hence Γ is consistent. By Completeness, Γ is satisfiable in some countable structure.

Theorem 27.17. Let T be a set of sentences in a first order language \mathcal{L} . If the class $\mathcal{C} = \operatorname{Mod}(T)$ is finitely axiomatizable, then there exists a finite subset $T_0 \subseteq T$ such that $\mathcal{C} = \operatorname{Mod}(T_0)$.

2006/04/17

Proof. Suppose that $\mathcal{C} = \operatorname{Mod}(T)$ is finitely axiomatizable. Then there exists a sentence σ such that $\mathcal{C} = \operatorname{Mod}(\sigma)$. Since $\operatorname{Mod}(T) = \operatorname{Mod}(\sigma)$, it follows that $T \models \sigma$. By the Completeness Theorem, $T \vdash \sigma$ and hence there exists a finite subset $T_0 \subseteq T$ such that $T_0 \vdash \sigma$. By Soundness, $T_0 \models \sigma$. Hence

$$\mathcal{C} = \operatorname{Mod}(T) \subseteq \operatorname{Mod}(T_0) \subseteq \operatorname{Mod}(\sigma) = \mathcal{C}$$

and so $\mathcal{C} = \operatorname{Mod}(T_0)$.

Definition 27.18. Let \mathcal{A} , \mathcal{B} be structures for the first-order language \mathcal{L} . Then \mathcal{A} and \mathcal{B} are *elementarily equivalent*, written $\mathcal{A} \equiv \mathcal{B}$, iff for every sentence σ of \mathcal{L} ,

$$\mathcal{A} \models \sigma$$
 iff $\mathcal{B} \models \sigma$.

Remark 27.19. If $\mathcal{A} \cong \mathcal{B}$, then $\mathcal{A} \equiv \mathcal{B}$. Howevery, the converse does not hold, *e.g.* consider a nonstandard model of arithmetic.

Definition 27.20. A consistent set of sentences T is said to be *complete* iff for every sentence σ , either $T \vdash \sigma$ or $T \vdash \neg \sigma$.

Example 27.21. Let \mathcal{A} be any structure and let

 $Th(\mathcal{A}) = \{ \sigma \mid \sigma \text{ is a sentence such that } \mathcal{A} \models \sigma \}.$

Then $\operatorname{Th}(\mathcal{A})$ is a complete theory.

Theorem 27.22. If T is a complete theory in the first-order language \mathcal{L} and \mathcal{A} , \mathcal{B} are models of T, then $\mathcal{A} \equiv \mathcal{B}$.

Proof. Let σ be any sentence. Then either $T \vdash \sigma$ or $T \vdash \neg \sigma$. Suppose that $T \vdash \sigma$. By Soundness, $T \models \sigma$. Hence $\mathcal{A} \models \sigma$ and $\mathcal{B} \models \sigma$. Similarly if $T \vdash \neg \sigma$, then $\mathcal{A} \models \neg \sigma$ and $\mathcal{B} \models \neg \sigma$.

Theorem 27.23 (Los-Vaught). Let T be a consistent theory in a countable language \mathcal{L} . Suppose that

- (a) T has no finite models.
- (b) If \mathcal{A} , \mathcal{B} are countably infinite models of T, then $\mathcal{A} \cong \mathcal{B}$.

Then T is complete.

Proof. Suppose not. Then there exists a sentence σ such that $T \not\models \sigma$ and $T \not\models \neg \sigma$. Hence $T \cup \{\neg\sigma\}$ and $T \cup \{\sigma\}$ are both consistent. By Completeness, there exists countable structures \mathcal{A} and \mathcal{B} such that $\mathcal{A} \models T \cup \{\neg\sigma\}$ and $\mathcal{B} \models T \cup \{\sigma\}$. By (a), \mathcal{A} and \mathcal{B} must be countably infinite. Hence, by (b), $\mathcal{A} \cong \mathcal{B}$. But this contradicts the fact that $\mathcal{A} \models \neg \sigma$ and $\mathcal{B} \models \sigma$.

2006/04/17

Corollary 27.24. Let T_{DLO} be the theory of dense linear orders without endpoints. Then T_{DLO} is complete.

Proof. Clearly T_{DLO} has no finite models. Also, if \mathcal{A} , \mathcal{B} are countable dense linear orders without endopints, then $\mathcal{A} \cong \mathcal{B}$. Hence T_{DLO} is complete.

Corollary 27.25. $\langle \mathbb{Q}, < \rangle \equiv \langle \mathbb{R}, < \rangle$.

Proof. $\langle \mathbb{Q}, \langle \rangle$ and $\langle \mathbb{R}, \langle \rangle$ are both models of the complete theory T_{DLO} .

The rationals $\langle \mathbb{Q}, < \rangle$ are a countable linear order in which "every possible finite configuration is realized."