MA3F2 Definitions

These notes for MA3F2 are an adaptation of Brian Sanderson’s notes, posted with
his permission. The originals are available on the web at
maths.warwick.ac.uk/~bjs/MA3F2-page.html.

Any errors below are due to me; please inform me of such via email at
s.schleimer@warwick.ac.uk.

1 Basic definitions

1.1 Knots and their diagrams

A knot K is a smooth loop in three-space which does not self-intersect itself. A more
precise definition might read:

Let S' = {(x,y) € R*| 22 + y* = 1} be the unit circle in the plane. A knot
K C R? is the image of a smooth embedding f: S' — R3.

Since it is difficult to draw in R®, and easy to draw in the plane, we will visualize
knots by projecting onto the xy—plane, and recording crossing information. So we define
a knot diagram D to be a smooth loop in the plane which is allowed to transversely
self-intersect at crossings. At each crossing there is exactly one overpassing and one
underpassing arc. Here are a few examples:

ot

Figure 1: Diagrams of the unknot, the trefoil, and the figure eight. These are drawn as
diagrams of polygonal knots.

The unknot is special: it is the only knot which is not knotted. Here are a few
drawings which are not diagrams of knots:

Figure 2: Projections of an arc, a wild knot, a self-intersecting loop, and a loop with a
triple point.

We can generalize the notion of a knot to include links: a link L is a collection of
pairwise disjoint knots in R3.
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Figure 3: Diagrams of the Hopf link, the Whitehead link, and the Borromean rings.

Notice that the Hopf and Whitehead links have two components while the Borromean
rings have three. Any knot can be considered a link of one component.

We shall often abuse good sense and refer to a knot and the diagram of the knot
interchangably. However they are not the same — this point will arise often in the course.

1.2 Orientations

Any knot has two possible orientations. A knot with an orientation is called an oriented
knot. To orient a link simply orient the components. It follows that a link with n
components has 2" possible orientations.

Figure 4: All four of the orientations on the Hopf link.

If the knot or link L is oriented then every crossing of the diagram of L receives a
handedness. The convention we will adopt in this class is shown in the following figure:

Figure 5: A left-handed crossing and a right-handed crossing.

This convention is similar to the right-hand rule in physics. One way to recall the
right-handed crossing is to cross your right thumb over your right index finger. With
orientation towards the ends of your fingers, this reproduces the right-handed crossing.
Also, a collection of right-handed crossings glued end-to-end, as in the figure below,
forms a right-handed screw.

Here is another way to remember the convention: in the standard diagram of the
right-handed crossing the overpassing arc has positive slope. Right-handed crossings will
be called positive while left-handed will be called negative. We will write sign(c) = 1 if
¢ is a right-handed crossing and sign(c) = —1 if ¢ is left-handed.
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XK

Figure 6: A sequence of right-handed crossings.

Definition 1.1. Suppose that D is a diagram of an oriented knot. The writhe of D is

the integer
w(D) = Zsign(c)

where the sum is taken over the crossings ¢ of the diagram.

Figure 7: The writhe of the right-handed trefoil, the Hopf link, and several unknots.

Exercise 1.2. Suppose that D is an oriented diagram of a knot (or link) and —D is the
diagram with opposite orientation. Prove that w(—D) = w(D).

Exercise 1.3. Suppose that D is an oriented diagram and D is the mirror-image dia-

gram. Prove that w(D) = —w(D).

Definition 1.4. Now suppose that D is an oriented diagram of a link with components
{Ci}7_,. We define the linking number of C; and C}, for i # j by

1 :
k(C;, C)) = 5 Z sign(c)
where the sum is taken over the crossings ¢ between C; and Cj.

Remark 1.5. The linking number between two knots was first defined by Gauss, as the
degree of a certain Gauss map. (Of course, he probably didn’t call it that!)

Exercise 1.6. Suppose that D = | | C; is a diagram. Prove that 1k(C;, C;) is an integer.

The total linking number of the diagram D is:

k(D) =Y 1k(C;, Cy).

i<j

Here are several examples:
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Figure 8: Orientations of the Hopf link, the Whitehead link, the Borromean rings, and
a boring three-component link.

2 Isotopy

Links, as curves in three-space, are analytical objects. In this course, we wish to treat
links combinatorially. To do that, we must decide when two links, perhaps differing
analytically, are combinatorially the same.

To that end we say two links K and L are isotopic if there is a smooth deformation
of R? throwing K onto L. A more precise definition might read:

Suppose that K is the image of f: | |S' — R3. The links K and L are
isotopic if there is an smooth map F': R3x1 — R? so that

e for all ¢t € I the map F; = F(-,t) is a diffeomorphism,
o Fy=1Id, and
e L is the image of Fj o f: St — R3.

We have our first foundational result:

Theorem 2.1 (Reidemeister). Every link K is isotopic to a link K' so that projection
to the xy plane gives a diagram of K'. O

An easy converse is:

Lemma 2.2. Every four-valent graph in the plane, equipped with crossing information,
s the diagram of some link. Futhermore, if two links have the same projection then the
links are isotopic.

Proof. To see the first: Suppose that D is such a graph. Draw the link Kp in R3 so
that Kp agrees with D away from the crossings and do the natural thing at over and

underpasses.
To see the second: if K projects to D then we may vertically isotope K to agree
with Kp, the link constructed above. O

To restate, every link may be isotoped to have a diagram and every diagram comes
from a link. However, the isotopies used above are very limited. We now must gain
diagrammatic control over all isotopies.

Suppose that K and L are isotopic. The isotopy between them gives a family of
links { K, }e; where Ky = F,(K). Thus Ky = K and K; = L. There is a corresponding
sequence of projections D;. For a generic isotopy we expect all but finitely many of the
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Figure 9: You cannot isotope a knot to the unknot just by “pulling tight”. Above K; is
a knot for all ¢+ € I. However, the motion cannot be generated by an isotopy of R?.

D, to be diagrams. At a time ¢ when Dy is not a diagram, we expect that D;_. and D;_.
will differ in a simple fashion.

Figures 10, 11, 12, and 13 display the four Reidemeister moves: each move is the
projection of a particularly simple isotopy.

Figure 10: Ry: any planar isotopy of the diagram.

In moves Ry, Rs, and R3 only part of the diagram is shown, and the isotopy is
assumed to leave the rest of the knot alone. We tacitly include the mirror image of each
of these moves, as well.

Figure 11: R;: the right and left twists. These are resolutions of the cusp.

If orientations are present then the moves are assumed to preserve them. There is
another move that we shall often use:
Here is our second foundational result.

Theorem 2.3 (Reidemeister). Suppose that K and L are links with diagrams D and
E. Then K and L are isotopic if and only if there is a sequence of Reidemeister moves
connecting D and E. O

The forward direction is the hard one and is comparable to Theorem 2.1

Exercise 2.4. Check that the backwards direction of Theorem 2.3 follows from Theo-
rem 2.1 and Lemma 2.2.

Exercise 2.5. Show that the R, move can be obtained as via a sequence of the standard
four moves.

Exercise 2.6. Show that the figure eight is isotopic to its mirror image. (Use a piece
of string!) Now draw a sequence of Reidemeister moves to prove that the two knots are
isotopic. (Hint: Exercise 2.5 may be useful.)

Exercise 2.7. The figure eight has two orientations. Are these isotopic? If so, provide
a sequence of Reidemeister moves.
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Figure 12: Ry: the finger move. These are resolutions of the self-tangency.

Figure 13: Rj3: these are resolutions of the triple point.

Knots and their isotopies are essentially topological in nature while diagrams and
Reidemeister moves are combinatorial. Thus Theorem 2.3 gives a combinatorial method
of understanding topological objects! In summary:

any property of diagrams which is invariant under the Reidemeister moves
1s in fact a property of isotopy classes of links.

3 Isotopy invariants

Now that we have a grasp of what it means for two knots to be isotopic we may state a
major question of knot theory:

Question 3.1. Is there an algorithm that, given two knots K and L, decides if K is
isotopic to L7

This may be specialized as follows:

Question 3.2. Is there an algorithm that, given a knot K, decides if K is isotopic to
the unknot?

In fact, the answer in each case is “yes” due to work of Haken in the 1960’s. Haken’s
work is three-dimensional in nature and focuses on the surfaces contained in the com-
plement of the knot. There is another approach following from the Geometrization
Theorem of Thurston (for Haken manifolds). The approach based on Thurston’s work
relies on finding hyperbolic structures via algebraic geometry.

There is another solution to the Unknotting Problem which is more in the spirit of
this class:

Theorem 3.3 (Dunfield-Garoufalidis). The A-polynomial detects the unknot. — [J

Figure 14: R..: dragging an arc of the diagram past the point at infinity.
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That is, the A—polynomial is an isotopy invariant and the value it takes on the
unknot is different from the value it takes on any other knot. To actually compute
the A—polynomial one must be given a diagram of the knot in question. That the A—
polynomial is an isotopy invariant follows from the fact that it is unchanged by the
Reidemeister moves. Let us return to more solid ground.

3.1 Linking number

Here is a first example of a link invariant, defined diagrammatically. Suppose that K is
a link and D is the diagram of K. Define the linking numbers of K to be the linking
numbers of D.

Corollary 3.4. The linking numbers of K are an invariant of the isotopy class of K.

Proof. Tt suffices to check that the Reidemeister moves do not change linking number.
Suppose that D and D’ are diagrams related by an R; move.

When i = 0 the diagrams D and D’ have identical combinatorics. Thus any invariant
combinatorally defined in terms of a diagram is unaffected by the Ry move.

When ¢ = 1 the writhe of a component of the link may change, but all crossings
between distinct components are unchanged.

When ¢ = 2 or 3, we have a “proof-by-picture.” O

Corollary 3.5. The unlink and the Hopf link are not isotopic. The Hopf link and the
Whitehead link are not isotopic.

Remark 3.6. Notice that the writhe of a link is not a knot invariant. Every right R,
move increases the writhe by one while every left R; move decreases the writhe by one.

Exercise 3.7. Provide a short proof that the unlink and the Hopf link are not isotopic.
Think about how you would prove that the unlink and the Whitehead link are not
isotopic.

3.2 Knot coloring

We take Z, = Z/nZ. Let D be the diagram of a link. Let {a;}ic|p| be the collection
of arcs of D. (That is, when you draw D, the arc «; can be drawn without lifting your
pencil.) Here |D| is the number of arcs of D. At each crossing ¢ of D we see bits of
three (perhaps non-distinct) arcs o, ¢, and ay.

Definition 3.8. A link L can be colored modulo n if there is a function x: |D| — Z,, so
that, for every crossing c if the arcs o; and «; cross under oy, then

z; +x; = 2x,  mod n.
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That is, at every crossing c the overpassing arc «; is “colored” with the average
of the two underpassing arcs. (A small amount of care is required here — for example
“average” is not defined when the modulus is even.) Notice that the constant function
gives a coloring: we call any such a trivial coloring.

Lemma 3.9. If x and y are colorings, modulo n, of D then so is x +y. O

Lemma 3.10. If D has a non-trivial coloring modulo n then for any i € |D| there is a
non-trivial coloring modulo n of D, say x: |D| — Z,,, where x; = 0.

Proof. Let y be the given non-trivial coloring. Let z: |D| — Z,, be the constant function
so that z; = —y; for all j. Then x = y + 2 is the desired coloring. O

Figure 15: Examples of non-trivial colorings. The left is a coloring of the trefoil modulo
3 while the right is a coloring of the figure eight modulo 5.

Theorem 3.11. A diagram D has a nontrivial coloring modulo n if and only if any
diagram D' related to D wvia a single Reidemeister move also has a non-trivial coloring
modulo n.

Proof. 1t suffices to check that the Riedemeister moves preserve triviality of colorings.
This is an easy case by case analysis. O

Corollary 3.12. All colorings of knot diagrams isotopic to the unknot are trivial. [

Example 3.13. Let D be the usual diagram of the trefoil. Since the diagram has a
three-fold symmetry, we can start with any arc, call it ag. By Lemma 3.10 we may
assume that zo = 0. Choosing a variable a € Z, we may choose the labels z; = a and
x9 = —a. Now all three arcs are labelled. The equation coming from the crossing where
a is the overcrossing is 2a = 0 4 (—a) and thus we find that 3a = 0 modulo n.

It follows that there is an integer k so that 3a = kn in Z. Since 3 is prime, we find
that either k or n is a multiple of 3. Now, if 3 divides k then a is a multiple of n and
the coloring we have found is trivial. We deduce that every modulo n coloring of trefoil
is either trivial or has n divisible by three.

Example 3.14. Let D be the usual diagram of the figure eight knot. Label the central
arc with a zero, and carry out a similar analysis. As argued in Example 3.13 since 5 is
prime, any non-trivial modulo n coloring of the figure eight has n divisible by five.

Now, the unknot only has trivial colorings. It follows that the unknot, the trefoil,
and the figure eight are none isotopic to the others.

2008,/01/13 8



MA3F2 Shadows, checkerboards

Proposition 3.15. A link diagram D has a non-trivial two coloring iff D has at least
two components.

Proof. Draw the four allowable colorings near a crossing and note that the two un-
derpassing arcs receive the same label. Thus in a coloring modulo 2 every component
receives the trivial coloring. This proves the forward direction.

If D has more than one component then color one of them with a zero and all of the
others with a one. O

Definition 3.16. A link L C R3 is split if L is disjoint from the yz plane but meets
both half-spaces {(z,y, z) | z > 0} and {(z,y,2) | < 0}. The diagram of a split link is
called a split diagram.

A link is splittable if it is isotopic to a split link. Again, we use the same language
for diagrams.

Proposition 3.17. If D is splittable then D has non-trivial colorings in every modulus
greater than one.

Proof. Fix n. Perform Reidemeister moves to split the diagram. Now color the com-
ponents in the positive half-space with a zero. Color the components in the negative
half-space with a one. We are now done, by Theorem 3.11. O

Corollary 3.18. The Borromean rings are not splittable.
Proof. The Borromean rings cannot be non-trivially colored modulo three. O

Exercise 3.19. Show that the standard diagram of the Borromean rings cannot be
3—colored.

Figure 16: A four coloring of the Borromean rings.

Exercise 3.20. As in the examples above, find non-trivial colorings of the Whitehead
link. Careful: you cannot divide by two in the ring Za,,.

4 Shadows and checkerboards

As we have seen above, a coloring of a diagram may be thought of as a collection of
variables (one for each arc of the diagram). Every crossing now gives a relation among
these variables. We'll call this the crossing equation. The examples you computed above
all suggest that there is a dependence among the crossing equations. This is indeed the
case: the proof is somewhat lengthy!
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