MA3F2 Shadows, checkerboards

Proposition 3.15. A link diagram D has a non-trivial two coloring iff D has at least
two components.

Proof. Draw the four allowable colorings near a crossing and note that the two un-
derpassing arcs receive the same label. Thus in a coloring modulo 2 every component
receives the trivial coloring. This proves the forward direction.

If D has more than one component then color one of them with a zero and all of the
others with a one. O

Definition 3.16. A link L C R3 is split if L is disjoint from the yz plane but meets
both half-spaces {(z,y, z) | z > 0} and {(z,y,2) | < 0}. The diagram of a split link is
called a split diagram.

A link is splittable if it is isotopic to a split link. Again, we use the same language
for diagrams.

Proposition 3.17. If D is splittable then D has non-trivial colorings in every modulus
greater than one.

Proof. Fix n. Perform Reidemeister moves to split the diagram. Now color the com-
ponents in the positive half-space with a zero. Color the components in the negative
half-space with a one. We are now done, by Theorem 3.11. O

Corollary 3.18. The Borromean rings are not splittable.
Proof. The Borromean rings cannot be non-trivially colored modulo three. O

Exercise 3.19. Show that the standard diagram of the Borromean rings cannot be
3—colored.

Figure 16: A four coloring of the Borromean rings.

Exercise 3.20. As in the examples above, find non-trivial colorings of the Whitehead
link. Careful: you cannot divide by two in the ring Za,,.

4 Shadows and checkerboards

As we have seen above, a coloring of a diagram may be thought of as a collection of
variables (one for each arc of the diagram). Every crossing now gives a relation among
these variables. We'll call this the crossing equation. The examples you computed above
all suggest that there is a dependence among the crossing equations. This is indeed the
case: the proof is somewhat lengthy!
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MA3F2 Shadows, checkerboards

Definition 4.1. Suppose that D is a diagram. If we forget the crossing information
we are left with a shadow: a smoothly immersed loop in the plane where are self-
intersections are transverse, and without triple points. The edges of the shadow are the
arcs remaining when we remove the self-intersection points.

We say that a diagram is connected if its shadow is connected.

Definition 4.2. Suppose that S is a shadow. A component of R2\.S is called a region
of S. Two regions are adjacent if they intersect along one or more edges of S.

We will need the following observation:
Lemma 4.3. If x,y € R then x and y can be connected by a polygonal path. ]
Exercise 4.4. Draw a shadow where at least two of the regions are not disks.

Exercise 4.5. Suppose that the diagram D has shadow S. Suppose that S has a at
least two regions which are not disks. Show that D is splittable.

A checkerboard coloring of a shadow is a coloring of every region of S to be black
or white so that white regions are only adjacent to black regions and, conversely, black
regions are only adjacent to white ones.

Lemma 4.6. Any shadow S admits a checkerboard coloring.

The proof that follows is somewhat technical. Can you find a simpler proof? Perhaps
if the shadow is very simple, such as a union of circles, say?

Proof of Lemma /.6. Isotope S slightly to put S in general position. For every region R
of S we define a parity e(R) as follows: pick a point x € R and pick a ray L emanating
from x, which is transverse to S. Now define e(R) to be the parity of LN S.

We must check that e(R) is well-defined. First suppose that L’ is another ray em-
anating from = € R, again transverse to S. Then there is a family {L; | ¢ € [0, 1]} so
that each L; is a ray and Ly = L, L; = L’. For only finitely many ¢ the ray L; is not
transverse. Then for small ¢ we find that L, . and L,,. are transverse and differ by
passing a crossing or tangency of S. Thus

|Li—eNS| = |LyreN S| mod 2.

Now suppose that we choose y € R instead of x, when defining the parity. Since
R is path-connected we may connect z and y by a polygonal path with vertices zq =
T, x1,...,T, =y. We may assume that n > 2 and move the points x; (for 0 < i < n)
slightly so that the lines through {x;_1,z;} and through {z;, z;11} are transverse to S.
Since the line segment [z;, z;41] is disjoint from S it follows that z; and x;,; both yield
the same parity. This proves that e(R) is well-defined.

Finally, suppose that R and R’ are adjacent regions and z € R and 2’ € R’ are
points. Then we may connect x and 2’ by a polygonal path which meets S exactly once.
Similar to the argument above, e(R) and e(R’) have are opposite parities. O
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MA3F2 Shadows, checkerboards

Definition 4.7. A shadow S is reduced if every self-intersection is adjacent to four
distinct regions.

Proposition 4.8. Suppose that L is a link. Then (perhaps after an isotopy) L has a
reduced diagram.

To prove Proposition 4.8 we will need the Jordan curve theorem:

Theorem 4.9 (Schonflies). Suppose that C € R? is a loop without self-intersections.
Then there is a homeomorphism h: R? — R? throwing C' onto the unit circle S*. O

This can be restated as: every simple loop in the plane bounds a disk. The Jordan
curve theorem is a basic tool in topology and is “obviously true.” That doesn’t mean
that it is easy to prove, however...

Proof of Proposition 4.8. Suppose that D is a nonreduced diagram for L. Then there is a
crossing of ¢ € D which meets one region twice. Since R is path-connected (Lemma 4.3)
there is a simple loop P in the plane so that PN S = ¢ and P~c C R. That is, P is
essentially contained in R and separates D into two pieces D’ and D", where D’ is the
piece contained in the disk bounded by P (Theorem 4.9). There is an isotopy of L which
flips D’ over, leaving D" unchanged. This gives a new diagram, isotopic to the old one,
with one fewer crossing. Repeat this process until arriving at a reduced diagram. O

Definition 4.10. For every diagram there is a dual graph Gp embedded in the plane.
To construct Gp let S be the shadow. For every region of S there is a vertex of Gg. For
every edge of S there is an dual edge of Gp connecting the two adjacent regions.

When D is reduced and connected the dual graph is a decomposition of the plane
into quadrilaterals (and one punctured quadrilateral, where the puncture is the point at
infinity).

Now suppose that D is a connected and reduced diagram. Choose a checkerboard
coloring of the diagram. Orient the edges of Gp so that all edges point from white to
black in the checkerboard coloring. Finally orient all quadrilaterals of R2\.G'p using the
counterclockwise convention.

Now, the crossings of D and the quadrilaterals of Gp are in one-to-one correspon-
dence. Each quadrilateral gives an equation as follows: add the variables corresponding
to the sides of the quadrilateral with a plus sign if the orientation of the quadrilateral
and the side agree and with a minus sign if the orientation of the quadrilateral and the
side disagree.

So for every crossing we have either the equation

—a+c—b+c=0

or
+a—c+b—c=0

and we notice that the first is the crossing equation and the second is its negative.
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MA3F2 Determinants

Proposition 4.11. With the above choice of signs, the sum of the crossing equations is
zero.

Proof. Quadrilaterals adjacent across an edge each contribute a copy of the correspond-
ing variable, but with opposite sign. O

To sum up: Lemma 3.10 shows that one of the variables may be ignored (set to
be zero). Proposition 4.11 similarly shows that one of the crossing equations may be
ignored. We will use these facts to compute the determinant of a diagram — this will
be the order of the coloring group.

5 Determinants of diagrams

Suppose that D = UC; is a diagram. We say that C; is a overcrossing component if

e cvery crossing between C; and the rest of D has C; above and

e (; does not cross itself.

It follows that the diagram is splittable and that C; is an unknot. (Convince yourself
that this is correct!)

For the rest of this section we will assume that all diagrams are connected, reduced,
and have no overcrossing component.

Lemma 5.1. With the assumption above, the number of arcs of D equals the number
of crossings of D.

Proof. Orient the diagram. Since there are no overcrossing components, every arc o« C D
meets a crossing at each end (however, these crossings may be equal. Eg the Hopf link).
Associate « with the crossing at the head of «, according to the orientation. This is the
desired bijection. O

Now define A, to be the matrix of crossing equations. We have one row for every
crossing and one column for every arc of D. It follows that A, is a square |D| x |D|
matrix. By Proposition 4.11 each column of the matrix sums to zero. By the definition
of the crossing equations each row sums to zero. (This fact is essentially the same as
Lemma 3.10.)

Exercise 5.2. Compute A, for the twist knots, 7.

We now define the matrix A by deleting any one column and any one row from A, .
Let d = |D| — 1. To find a coloring modulo n is now equivalent to solving the linear
equation Ar = nb where

r=(x1,...,2q), b=(b1,...,bq)

are column vectors in Zd.
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MA3F2 Determinants

Case (i) Suppose that det(A) = 0. Then there is a non-zero solution over Q to the
equation A-y = 0. If y; = p;/q; then set @ = [] ¢;. Taking z = Qy gives a solution
of A-z = 0 over Z. Take 2/ = z/ged(z;). Then 2/ # 0 mod n for any n > 1.
Setting z{, = 0 gives a non-trivial coloring modulo n for any n > 1.

To sum up: when det(A) = 0 then the diagram D can be non-trivially colored in
every modulus.

Case (ii) Suppose that det(A) # 0. Then Cramer’s rule tells us that there is a unique
solution over QQ, namely

FUJAL A A
where Ay, is the k' column of A and nb replaces A, in the numerator. So we find
that
XTr. =
k det(A)
Thus when det(A)|n we have solutions over Z. As a special case, take n = | det(A)|
and then

for 1 < k < d. Setting zop = 0 now solves the coloring equations. However this
solution is not completely satifactory. It is conceivable that, for any choice of b,
the coloring is trivial modulo n.

To sum up: when |det(A)| = 1 then all colorings, in every modulus, are triv-
ial. When |det(A)| > 1 then perhaps we may find non-trivial solutions modulo
| det(A)| using Cramer’s rule and perhaps we may not; we are assured, however,
that there are some moduli where only trivial solutions are possible.

Exercise 5.3. Show that the absolute value | det(A)| is independent of the choice of
row and column deleted from A™.

Exercise 5.4. [Harder| Show that the Smith normal form of A is independent of the
choice of row and column deleted from A*. (See Lemma 6.2 below, also.)

Definition 5.5. The determinant of a link L is det(L) = | det(A)| where A is the matrix
defined above. We shall see later in the course that this is an invariant of the isotopy
class of L.

Exercise 5.6. In the Case (ii) above the choice of b is not specified. Setting b =
(1,0,...,0) we find that 2 = (—1)*"Minor; ,(A) and also that det(A) = A - x where
A' is the first row of A. Use this to find a coloring modulo det(K) of the knot 63.

Exercise 5.7. Check that if the diagram is alternating (every overcrossing arc goes over
exactly one crossing) then the variables may be ordered so that the matrix A™ has twos
along the diagonal.
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Exercise 5.8. Compute the determinant of the 5; knot (the cinefoil) and the twist
knots. Notice that the first two twist knots are the trefoil and the figure eight.

6 Smith normal form and the coloring group

6.1 Smith normal form and Cramer’s rule

We now find a method, more general than the one involving Cramer’s rule, for finding
non-trivial colorings.

Theorem 6.1. The link L has a non-trivial coloring modulo n > 1 if and only if
ged(n, det(L)) > 1.

We need to recall Smith normal form:

Lemma 6.2. Given a d x d integer matriz A, as above, there are matrices R,C, B so
that R, C are isomorphisms of Z¢, B is diagonal, and B = RAC.

It follows that det(A) = det(B).
Proof of Lemma 6.2. Use row (and column) operations of the form
Type 1. r; — r; and r; — —7;, and
Type 2. r;—r;+arjfor ¢ # j and a € Z.

Notice that operating on rows is equivalent to multiplying A on the left by a signed
permutation matrix (1) or an elementary matrix (2). Operating on columns is equivalent
to multipying on the right. Also, such matrices are isomorphisms of Z¢.

Exercise 6.3. Show that type 1 operations can be obtained from three operations of
type 2.

Let a;; be a non-zero entry of A of smallest absolute value. Using type 1 operations
move a;; into the upper-left corner of A.

A [‘”j *}

x %

Now use type 2 operations to add or subtract row one (column one) from the other rows

(columns) to decrease the absolute value of all other entries in the first row and column.

Repeat the above steps until all entries in the first row and column, except for perhaps

the upper-left entry, are zero. Note that this process must finish, as the absolute value
of the upper-left entry only decreases.
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