
MA3F2 Smith, coloring group

Exercise 5.8. Compute the determinant of the 51 knot (the cinefoil) and the twist
knots. Notice that the first two twist knots are the trefoil and the figure eight.

6 Smith normal form and the coloring group

6.1 Smith normal form and Cramer’s rule

We now find a method, more general than the one involving Cramer’s rule, for finding
non-trivial colorings.

Theorem 6.1. The link L has a non-trivial coloring modulo n > 1 if and only if
gcd(n, det(L)) > 1.

We need to recall Smith normal form:

Lemma 6.2. Given a d × d integer matrix A, as above, there are matrices R,C,B so
that R,C are isomorphisms of Zd, B is diagonal, and B = RAC.

It follows that det(A) = det(B).

Proof of Lemma 6.2. Use row (and column) operations of the form

Type 1. ri "→ rj and rj "→ −ri, and

Type 2. ri "→ ri + arj for i %= j and a ∈ Z.

Notice that operating on rows is equivalent to multiplying A on the left by a signed
permutation matrix (1) or an elementary matrix (2). Operating on columns is equivalent
to multipying on the right. Also, such matrices are isomorphisms of Zd.

Exercise 6.3. Show that type 1 operations can be obtained from three operations of
type 2.

Let aij be a non-zero entry of A of smallest absolute value. Using type 1 operations
move aij into the upper-left corner of A.

A "→
[
aij ∗
∗ ∗

]
Now use type 2 operations to add or subtract row one (column one) from the other rows
(columns) to decrease the absolute value of all other entries in the first row and column.
Repeat the above steps until all entries in the first row and column, except for perhaps
the upper-left entry, are zero. Note that this process must finish, as the absolute value
of the upper-left entry only decreases.
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MA3F2 Smith, coloring group

Now the matrix has block form, with d− 1 zeros in the first row and d− 1 zeros in
the first column. [

b1 0
0 B1

]
Here 0 is the zero row or column vector of the correct size. We now repeat the above
process in the lower-right corner. b1 0 0

0 b2 0
0 0 B1


The process terminates with the desired diagonal matrix B.

In fact, we may also arrange that the diagonal entries b1, b2, . . . , bd of B have the
property that bi|bi+1. We will not need this extra property.

Proof of Theorem 6.1. Since B = RAC we have a square of maps:

Zd A !! Zd

R
""

Zd

C

##

B !! Zd

where the vertical arrows are isomorphisms. Now, if we reduce modulo n we obtain a
new square

Zd
n

An !! Zd
n

Rn

""
Zd

n

Cn

##

Bn !! Zd
n

and the link L has a non-trivial coloring modulo n if and only if ker(An) is non-trivial.
Since Cn is again an isomorphism, Cn(ker(Bn)) = ker(An). Thus L may be so colored
if and only if Bn has a kernel. Since Bn is diagonal, to have a kernel there is some
c ∈ Z and some diagonal entry bi so that bic = 0 mod n with c #= 0 mod n. This last
happens if and only if gcd(n, bi) > 1. Since |∏ bi| = det(L) the theorem is proven.

Remark 6.4. The problem of finding colorings is now completely solved, in principle.
The matrix B records which moduli have non-trivial colorings. To actually produce
such it suffices to apply the matrix Cn to an element of the kernel of Bn.

In the above we restricted to diagrams without overcrossing components. For such
diagrams the matrix A+ is not square. However, we may always perform Reidemeister
moves to “cure” the bad component. Then, since the link is splittable, Proposition 3.17
implies that L has non-trivial colorings in every modulus. Thus L falls into Case (i)
above, and det(L) = 0, as expected.
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We now turn to several examples:

Exercise 6.5. Let T (2, 4) be the (2, 4)–torus link. Let W be the Whitehead link. Show
that det(T (2, 4)) = 4 while det(W ) = 8.

It follows that the coloring numbers cannot distinguish T (2, 4) from W in the same
way we differentiated between the W and the Borromean rings. However, the determi-
nant does distingush T (2, 4) and W .

As we have seen above, if a link is splittable then det(L) = 0. The converse is false:
the link shown in Figure 17 has a coloring over Z and so has determinant zero. (The
link is “clearly” not isotopic to the unlink: can you provide a proof?)

Figure 17: Not the unlink. Does anybody know a nice name for this link?

Finally, we give an example of a knot with det(K) = 1. Define P (p, q, r) to be the
(p, q, r)–pretzel link. See Figure 18 for a picture of the (4,−4, 4)-pretzel link.

Figure 18: The (4, -4, 4)-pretzel link.

Exercise 6.6. Show that P = P (−2, 3, 5) has determinant equal to one.

Exercise 6.7. Work out the determinant for general pretzel knots P (p, q, r).
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6.2 The coloring group

Definition 6.8. Suppose that D is a connected, reduced diagram without overcrossing
components of a link L. Define Col(L) to be the abelian group with generators equal to
the collection of all overcrossing arcs but one, and relations being the crossing equations

Col(L) = 〈x1, x2, . . . , xd | xk + xk = xi + xj〉
where on the right the missing overcrossing arc is set to be zero.

Proposition 6.9. The group Col(L) is an isotopy invariant.

Exercise 6.10. Prove this. As usual, it suffices to check that Col(L) is unchanged, up
to isomorphism, by the Reidemeister moves.

The coloring group Col(L) can be identified with the quotient group Zd/AT Zd where
AT is the transpose of the matrix obtained by deleting a row and column from the
matrix A+ of crossing equations. To see this recall that we had:

{solutions modulo n} → Zd
n → Zd

n.

The second map is An; the matrix A modulo n. The second term is generated by arcs,
the third is generated by crossings, and the first is the kernel of An. Taking the transpose
of A gives a “reversed” collection of groups:

Zd → Zd → Col(L)

where the first map is AT , the first term is generated by crossings, the second by arcs,
and the third is the cokernel.

Proposition 6.11. Suppose that L is a link. Let A be the martix obtained by deleting
a row and column from the matrix A+ of coloring equations. As in Lemma 6.2 we have
a diagonal matrix B = RAC. Then Col(L)∼=Zb1× . . .×Zbd

.

Proof. As B = RAC it follows that BT = CT AT RT . Since B is diagonal, BT = B, as
well. Now consider the diagram of maps:

Zd AT
!! Zd

CT

""

!! Col(L)

?
""

Zd

RT

##

BT
!! Zd !! Zb1× . . .×Zbd

.

That is, Col(L) is the cokernel of AT and Zb1× . . .×Zbd
is the cokernel of BT . As

argued in the proof of Theorem 6.1, since B = RAC and R,C are isomorphisms, many
invariants of A and B agree. In particular we can build an isomorphism between the
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cokernels of AT and BT . The argument is a classic “diagram chase”: a more refined
version is called the five lemma in algebra.

Suppose that x ∈ Col(L) is any element. Choose a preimage of x in Zd say x′, project
x′ down to y′ ∈ Zd via the map CT and then forward to y in the cokernel of BT . We
define a map

φ : Col(L)→ Zb1× . . .×Zbd
.

by sending x to y. Our first task is to show that φ is well-defined. So suppose that x′′ is
another preimage of x which projects to z ′ and then to z in coker(BT ). We must show
that y = z.

Since x′ and x′′ are both preimages of x, by the definition of the cokernel, their
difference x′ − x′′ lies in the image of AT . Choose any preimage of x′ − x′′ and call that
ξ. This projects, via the inverse of RT , to an element ξ′ which is carried forward by BT .
Since BT = CT AT RT we find that

BT (ξ′) = CT AT RT (ξ′) = CT AT (ξ) = CT (x′ − x′′) = y′ − z′.

Since y′ − z′ is in the image of BT the element maps to zero in the cokernel. Thus
y − z = 0, as desired.

Our second task is to prove that φ is an isomorphism. I leave this as an exercise.

Since the order of Zb1× . . . Zbd
equals

∏
bi (as long as all of the bi %= 0) we have:

Corollary 6.12. If det(L) %= 0 then the group Col(L) has order det(L). If det(L) = 0
then the group Col(L) is infinite.

Corollary 6.13. The determinant of a link is an isotopy invariant.

Example 6.14. The coloring group is a stronger invariant than the determinant. For
example, the knots 61 and 946 both have determinant equal to 9. However, Col(61) = Z9

while Col(946) = Z3×Z3.

Proposition 6.15. Suppose that L is a link and B is the diagonal matrix defined above,
with digaonal entries b1, . . . , bd. Then the number of distinct colorings modulo n is∏

gcd(bi, n).

Proof. A coloring of the diagram D is a function x taking overcrossing arcs to elements
of Zn so that one distinguished arc is always taken to zero and so that the crossing
equations are satisfied. Any such function gives a homomorphism x : Col(L)→ Zn. The
collection of such homomorphisms forms a group

Hom(Col(L), Zn).
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The order of this group is the number of distinct colorings. Since Col(L)∼=Zb1× . . .×Zbd

the conclusion follows from the identities

Hom(Za, Zb) = Zgcd(a,b)

and
Hom(Za×Zb, Zc) = Hom(Za, Zc)×Hom(Zb, Zc).

Example 6.16. The knot 61 has only three distinct colorings modulo 3 while the knot
946 has nine.

Example 6.17. The coloring group can also distinguish the two-component unlink from
the link shown in Figure 17, even though both have determinant zero. The coloring group
of the unlink is Z while the other has Col(L)∼=Z×Z2

3. Proposition 6.15 tells us that L
has twenty-seven colorings modulo 3 while the unlink has only three.

Exercise 6.18. Compute the matrix A+ for the link L shown in Figure 17. Compute
the Smith normal form of the associated matrix A. Use this to check the claim made in
Example 6.17.

Remark 6.19. Several times in class we have labelled one arc of a diagram with a zero,
labelled some of the other arcs in an ad hoc fashion, and then deduced labels on all of
the other arcs. (Occasionally we also find relations amongst the original labels.) This
procedure can be thought of as computing the group Col(L).

Exercise 6.20. Reproduce the direct computation of Col(L), where L is the link shown
in Figure 17, as performed in class.

Remark 6.21. We remark that up to seven crossings the coloring numbers suffice
to distinguish all knots in the tables. However 82 and 83 both have coloring group
isomorphic to Z17. In Section 8 we will discuss an invariant which distinguishes these
knots.

Exercise 6.22. Check that 82 and 817 have isomorphic coloring groups.

7 Mirrors, inversion, and codes

7.1 Mirrors

Let L ⊂ R3 and let M ⊂ R3 be an affine plane. That is, M need not contain the origin.
The mirror of L, m(L), is the link obtained by reflecting L through the plane M .

Proposition 7.1. If L0 and L1 are isotopic then so are m(L0) and m(L1).
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