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The order of this group is the number of distinct colorings. Since Col(L)∼=Zb1× . . .×Zbd

the conclusion follows from the identities

Hom(Za, Zb) = Zgcd(a,b)

and
Hom(Za×Zb, Zc) = Hom(Za, Zc)×Hom(Zb, Zc).

Example 6.16. The knot 61 has only three distinct colorings modulo 3 while the knot
946 has nine.

Example 6.17. The coloring group can also distinguish the two-component unlink from
the link shown in Figure 17, even though both have determinant zero. The coloring group
of the unlink is Z while the other has Col(L)∼=Z×Z2

3. Proposition 6.15 tells us that L
has twenty-seven colorings modulo 3 while the unlink has only three.

Exercise 6.18. Compute the matrix A+ for the link L shown in Figure 17. Compute
the Smith normal form of the associated matrix A. Use this to check the claim made in
Example 6.17.

Remark 6.19. Several times in class we have labelled one arc of a diagram with a zero,
labelled some of the other arcs in an ad hoc fashion, and then deduced labels on all of
the other arcs. (Occasionally we also find relations amongst the original labels.) This
procedure can be thought of as computing the group Col(L).

Exercise 6.20. Reproduce the direct computation of Col(L), where L is the link shown
in Figure 17, as performed in class.

Remark 6.21. We remark that up to seven crossings the coloring numbers suffice
to distinguish all knots in the tables. However 82 and 83 both have coloring group
isomorphic to Z17. In Section 8 we will discuss an invariant which distinguishes these
knots.

Exercise 6.22. Check that 82 and 817 have isomorphic coloring groups.

7 Mirrors, inversion, and codes

7.1 Mirrors

Let L ⊂ R3 and let M ⊂ R3 be an affine plane. That is, M need not contain the origin.
The mirror of L, m(L), is the link obtained by reflecting L through the plane M .

Proposition 7.1. If L0 and L1 are isotopic then so are m(L0) and m(L1).
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Proof. Suppose that Lt, for t ∈ [0, 1] interpolates between L0 and L1. Then m(Lt)
interpolates between m(L0) and m(L1).

Proposition 7.2. The isotopy class of the link m(L) is independent of the choice of
plane M .

Proof. Suppose that M,M ′ are a pair of affine planes and m(L),m′(L) are the links
obtained by reflecting L in each. Consider the homeomorphism φ : R3 → R3 which is
gotten by reflecting first in M and then in M ′. This is a orientation preserving isometry
of R3. If M and M ′ are parallel then φ is a translation. If M and M ′ meet then φ is
a rotation about the line of intersection, by angle twice the dihedral angle between M
and M ′. In either case, there is an isotopy (motion of R3) taking φ to the identity map.
Since φ throws m(L) onto m′(L) it follows that m′(L) is isotopic to m(L).

Proposition 7.3. A diagram for m(L) is obtained by switching all of the crossings of
a diagram for L.

Proof. As in Lemma 2.2, we draw the diagram for L on the xy–plane in R3. We lift the
overcrossings slightly into {(x, y, z) | z > 0} and push the undercrossings slightly into
{(x, y, z) | z < 0}. Reflecting in the xy–plane now gives the desired conclusion.

Example 7.4. The right and left trefoils are mirror images of each other. In general,
every crossing of m(L) has sign the negative of the sign of the corresponding crossing
in L.

Definition 7.5. A link is achiral (also: amphichiral) if it is isotopic to its mirror image.
If not, it is chiral.

Exercise 7.6. If you haven’t already done so, check that the figure eight knot (41) is
achiral.

Remark 7.7. The knot tables (for example
http://www.math.toronto.edu/∼drorbn/KAtlas/Knots/ or
http://www.indiana.edu/∼knotinfo/) only display one of K and m(K). Of the 35
knots with at most eight crossings only 41, 63, 83, 89, 812, 817, and 818 are achiral.
Classically, it was considered difficult to determine the chirality of a knot. Dehn, in a
1914 paper, used the fundamental group of the knot complement to show that the left
and right trefoils are not isotopic.

Proposition 7.8. The links L and m(L) have isomorphic coloring groups.

It follows that the coloring group, and hence the determinant, cannot distinguish
the isotopy classes of L and m(L).

Proof of Proposition 7.8. Use a mirror plane which is perpendicular to the xy–plane.
This gives a bijection between the arcs of the two diagrams. Since the coloring relations
are also preserved, this bijection induces the desired isomorphism of groups.
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7.2 Invertibility

Definition 7.9. Let L be an oriented link and let r(L) denote L with all orientations
reversed. If L and r(L) are isotopic as oriented links then L is invertible. (For the isotopy
we require that all components are sent to themselves, but with orientation reversed.)

Exercise 7.10. Show that all pretzel knots are invertible. Are all pretzel links invert-
ible?

We remark that the only knots, up to nine crossings, which cannot be inverted are
817, 932, and 933. This is not easy to prove! Among the nine crossing knots only 932 is
neither invertible nor achrial. That is, if K = 932 then K, r(K),m(K), rm(K) are four
distinct isotopy classes (of oriented knots).

7.3 Knot codes

Recall now that a diagram is alternating if every overcrossing arc crosses over exactly
one crossing. (This is the best definition in the course!)

Proposition 7.11. Suppose that S is a shadow (diagram without crossing informations)
with only one component. Then S represents (up to reflection) a unique inoriented
alternating knot.

Proof. Orient the component and introduce crossings by walking along the shadow and
alternating between under and overcrossings. To prove that no conflict arises choose a
checherboard coloring of the diagram and notice that when black (white) is on the left
we go under (over) at the next crossing.

Remark 7.12. Among the eight or fewer crossing knots, only 819, 820, and 821 do
not admit alternating diagrams. (As a challange: how could we show that a knot K
has no alternating diagrams?) However, this trend probably does not continue; Hoste
et al[1998] conjecture that the percentage of knots with an alternating diagram goes to
zero exponentially with crossing number.

Given a shadow with one component, a point on the shadow, and an orientation we
may walk around the component numbering the crossings we come to. Every crossing
receives exactly two numbers.

Exercise 7.13 (Hard.). Prove that every crossing receives one odd and one even
number.

So every shadow gives a function

f : {odd numbers} → {even numbers}.
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We write this as a sequence [f(1), f(3), f(5), . . .]. This sequence determines the shadow
(up to R0 and R∞ moves) and so, by Proposition 7.11, determines an alternating knot.
For example, the trefoil is represented by the sequence [4, 6, 2]. Now, different choices
of shadow for a single isotopy class of knot may give different sequences. So we say
that the lexicographically first such sequence is the code of the knot. Finally, when
the diagram is not alternating, we decorate the sequence with minus signs to indicate
“wrong” crossings. For example, the sequence [6, 8−, 2, 4−] represents a non-alternating
diagram of the trefoil.

Exercise 7.14. The knots 61, 62, 63, have codes

[4, 8, 12, 10, 2, 6] [4, 8, 10, 12, 2, 6] [4, 8, 10, 2, 12, 6]

respectively. Draw these and check that they are isotopic to the standard diagrams.

Exercise 7.15. Compute the codes for the granny and reef knots, shown in Figure 19.

Figure 19: The granny knot is the connect sum of two right trefoils. The reef knot is
the connect sum of a right with a left trefoil.

Exercise 7.16. Prove that there are at most 2n ·n! knots, up to isotopy, with n or fewer
crossings.

8 The Alexander Polynomial

8.1 The definition

Above, we studied colorings using labels from the group Zn. One way of defining a
coloring is to view it as a function from the set of overcrossing arcs to Zn satisfying the
crossing relations. The relations must be carefully choosen – this done we find that the
coloring number (that is, the modulus n) is an isotopy invariant of the knot or link.

The Alexander polynomial may be defined in a similar manner. We map the over-
crossing arcs to the ring Z[t, t−1], modulo a Laurent polynomial ∆(t). We now choose
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PSfrag replacements

αβ

γ

Figure 20: The names of the arcs at the overcrossing.

the crossing relations: Orient the components of the diagram. Fix attention on an
overcrossing where α is the overcrossing arc, β is the arc to the left of α (facing in the
direction of the orientation of α), and γ is the arc to the right of α. See Figure 20.

Suppose that α is labelled by the Laurent polynomial a(t), β is labelled by b(t), and
γ is labelled by c(t). At the crossing we impose the relation:

(1− t)a + tb− c = 0 mod ∆.

Note that the orientation on the understrand is not used.

Remark 8.1. Note that when t = −1 the above reduces to 2a− b− c = 0 mod ∆(−1),
which is identical to the crossing crossing equation for colorings modulo ∆(−1).

To find such a labelling, as before, we consider A+, the matrix of crossing equations.
This time the entries in A+ are polynomials in t. After deleting a column (eg, setting one
label equal to zero) and deleting one row (eg, ignoring one crossing equation) we arrive
at the matrix A. The determinant of this matrix is defined to be ∆L(t), the Alexander
polynomial. This will be an isotopy invariant more powerful than the determinant.

Example 8.2. Since the figure eight is alternating, we may order the arcs so that the
arc αi runs over the ith crossing. This is carried out in Figure 21. This gives the matrix:

PSfrag replacements

α0

α1

α2

α3

Figure 21: The figure eight knot, labelled and oriented.
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A+ =


1− t 0 t −1

t 1− t 0 −1
t −1 1− t 0
0 −1 t 1− t

 .

Deleting the first row and column gives

A =

1− t 0 −1
−1 1− t 0
−1 t 1− t


and this has determinant

(1− t)3 + t− (1− t) = −t + 3t2 − t3 = ∆K(t).

(A common normalization is to multiply by ±tn to make the first term positive and
make the polynomial symmetric in t and 1/t. For the figure eight knot we then have
∆K(t) = t−3+t−1.) Cramer’s rule, as in the discussion preceding Exercise 5.3, suggests
that we take polynomials equal to:

x0 = 0, x1 = (1− t)2, x2 = 1− t, x3 = 1− 2t.

Then we may check that

∆K(t) = (1− t)x1 + 0 · x2 − x3

= (1− t)(1− t)2 − (1− 2t)

= 1− 3t + 3t2 − t3 − 1 + 2t.

Finally, we check the crossing equations (that is, check that A+ · x = 0 mod ∆K(t)):

(1− t)x0 + tx2 − x3 = t(1− t)− 1 + 2t = −1 + 3t− t2,

tx0 + (1− t)x1 − x3 = (1− t)3 − (1− 2t) = −t + 3t2 − t3,

tx0 − x1 + (1− t)x2 = −(1− t)2 + (1− t)(1− t) = 0,

−x1 + tx2 + (1− t)x3 = −(1− t)2 + t(1− t) + (1− t)(1− 2t) = 0.

Notice that one of the equations only sums to ∆K(t) up to multiplication by ±tn. Also,
none of the columns A+ sum to zero. We will show that this can be remedied, below.

Exercise 8.3. Carry out the above for the trefoil knot, T . You should find that ∆T (t) =
t− 1 + t−1, up to multiplication by units in the ring Z[t, t−1].

To arrange that each column of A+ sums to zero, we will need a refined version of
the checkerboard construction used in the proof of Proposition 4.11.
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8.2 Winding number

Suppose that S is the shadow of an oriented diagram D. Isotope S slightly to put S in
general position. For every region R of S we define a winding number w(R) as follows:
pick a point x ∈ R and pick a ray L emanating from x, which is transverse to S. Every
intersection of S and L receives a sign: +1 if the arc crosses L from right to left and −1
if the arc crosses L from left to right. Now define w(R) to be the sum of these signs.

PSfrag replacements 0

0

0

1

1

−1

−1

Figure 22: The winding number of the curve about each region is shown.

Exercise 8.4. Show that w(R), the winding number of the oriented shadow around the
region R, is well defined. Show that if R,R′ are adjacent then w(R) = w(R′)± 1. Show
that w(R) = e(R) mod 2 where e(R) is the parity of the region (defined in the proof of
Lemma 4.6).

8.3 Row sum

We can now justify the given definition of the Alexander polynomial. First of all,
we consider the labelling to be a map from the set of overcrossing arcs to the ring
Z[t, t−1]/∆(t). As with Lemma 3.10, by subtracting a constant labelling we may assume
that any one arc is sent to zero. Again, this corresponds to deleting a column from A+.

To obtain a version of Proposition 4.11 for the Alexander polynomial: Fix an oriented
diagram D which is connected, reduced, and has no overcrossing component. Label the
regions of the diagram with their winding number.

Recall that GD is the dual graph. Orient the edges of GD so that all edges point from
regions with lower winding number to regions with higher. Orient all quadrilaterals of
R2!GD using the counterclockwise convention.

Now, the crossings of D and the quadrilaterals of GD are in one-to-one correspon-
dence. Each quadrilateral gives an equation as follows: for each variable corresponding
to a side of the quadrilateral multiply it by tw where w is the winding number pointed
at by the side. Mutiply the result by −1 if the orientation of the quadrilateral and the
side disagree. Add the four resulting monomials.

For every crossing we find the sum equals

±tn[(1− t)a + tb− c].

2008/02/03 25



MA3F2 Alexander

As with Proposition 4.11 with the above choices of crossing equation the sum of the
crossing equations is zero.

8.4 Consequences

It is possible to give a proof that ∆L(t) is an isotopy invariant of the link L, by examining
the effect of the Reidemeister moves on the matrix A+. However, we will content
ourselves with a few consequences of the definition.

Proposition 8.5.

• |∆L(−1)| = det(L).

• ∆L(t) = ∆r(L)(t−1) = ∆m(L)(t−1), up to multiplication by units in the ring Z[t, t−1].

Proof. The first is the content of Remark 8.1. For the second, after reflection or inversion
we find that the arc γ is now to the left of α. It follows that the crossing equation changes
from

(1− t)a + tb− c = 0

to
(1− t)a′ − b′ + tc′ = 0.

Now, if in AK
+ , we replace t everywhere by 1/t we find

(1− 1/t)a(1/t) + 1/t · b(1/t)− c(1/t) = 0.

Multiplying by −t gives

(1− t)a(1/t)− b(1/t) + tc(1/t) = 0.

Thus the matrix (−t)AK
+ (1/t) is identical to the matrix Am(K)

+ (t) = Ar(K)
+ (t) (possibly

after multiplying some rows by units in the ring Z[t, t−1]). The conclusion follows.

Remark 8.6. In fact, if K is a knot then ∆K(t) = ∆K(t−1). See Rolfsen, pages 207-
208, for a proof. It follows that the Alexander polynomial cannot distinguish a knot
and its mirror image. So, even though ∆K is much stronger than the determinant, we
still cannot prove that the left and right trefoils are not isotopic.

Proposition 8.7. If L is a splittable link then ∆L(t) = 0.

Proof. Suppose that D is a split diagram for L. Let C and C ′ be the two subdiagrams.
Then each of these has its own matrix of crossing equations, say B+ and B′

+. Thus A+

has block form:

A+ =

[
B+ 0
0 B′

+

]
.

2008/02/03 26



MA3F2 Alexander

Note that det(B+) = det(B′
+) = 0. So, deleting the first row and column from A+ gives

A =

[
B 0
0 B′

+

]
.

It follows that det(A) = det(B) · det(B ′
+) = ∆C(t) · 0 = 0, as desired.

Remark 8.8. Note that the above proof, when it assumes that the diagram D is split,
actually uses the unproven fact that ∆L is an isotopy invariant.

8.5 Connect sums of knots

Suppose that K and L are oriented knots. Let D and E be diagrams of K and L
respectively, where D lives in the left half-plane {(x, y) | x < 0} and where E lives in
the right.

We may assume, possibly after an R1 move, that each of D and E has an outer-
most arc which is oriented in the counterclockwise fashion. Connect these arcs by an
embedded path α which meets D and E each in exactly one end point. Remove a small
arc from each of D and E (about the endpoints of α) and double α. Gluing everything
together gives a diagram which we denote D#E. Let K#L be any knot which has
diagram D#E. We call K#L the connected sum of the oriented knots K and L.

Theorem 8.9.

• The knot K#L is well-defined up to isotopy and depends only on the isotopy classes
of K and L.

• K#L is isotopic to L#K.

• K#(L#M) is isotopic to (K#L)#M .

• For the unknot U we find that U#K is isotopic to K.

Proof. Begin with the first claim: Consider the diagrams D and E and the arc α. If we
use a different arc α′, perhaps connecting different outermost arcs of D and E, then we
shrink E to be very small. Reel in the small copy of E along the arc α′. Now move the
small copy of E along D until it is next to the correct outermost arc. Now reel E back
out and enlarge. If necessary we can also shrink D, reel it into E, and so on.

Now, if D and D′ are isotopic, then we can prove that D#E is isotopic to D′#E.
Shrink E, reel it in, and apply the isotopy that throws D onto D′. Now unreel E and
enlarge.

The last three claims all have simple diagrammatic proofs, using the techniques of
the first claim.

Definition 8.10. A knot K is prime if whenever K is isotopic to L#M we find that
one of L or M is isotopic to the unknot.
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Note that the knot tables only record prime knots. As remarked above in the caption
for Figure 19 the granny and reef knots are connect sums of trefoils. These two knots are
obviously not isotopic, but the Alexander polynomial (and thus the coloring numbers,
etc) is not powerful enough to see this:

Theorem 8.11. ∆K#L(t) = ∆K(t) · ∆L(t), up to multiplication by units of Z[t, t−1].

Since the right and left trefoils have the same Alexander polynomial, so do the reef
and granny knots.

Proof of Theorem 8.11. Suppose that D and E are diagrams of K and L. Let D′ and
E ′ be the diagrams after a R1 move. Let d0 be the new crossing in D′ and let em be the
new crossing in E ′. Let x0 be the arc of D′ crossing over d0 and let y0 be the arc of E ′

crossing over em.
Let A+ and B+ be the matrices of crossing equations for D′ and E ′. Define A to be

the matrix obtained by deleting the d0–row and x0–column from A+. Define B to the
matrix obtained by deleting the em–row and y0–column from B+.

Now, C = D′#E ′ is the connect sum of diagrams, as described above. (This is the
same as taking the connect sum D#E and performing an R2 move between the two
copies of α.) Here we find that the arcs x0 and y0 have been merged and there is a new
undercrossing arc z. Take the matrix of crossing equations for C and delete the row
corresponding to the crossing d0 and the column for x0 = y0. Then the result has the
form: A 0 0

0 B 0
0 v t


where v = (0, . . . , 0,−1) is a vector of the correct length. This matrix given has lower
triangular block form and so its determinant gives the desired result.

2008/02/03 28


