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Chapter 1

Introduction

Definition 1. A knot is a loop in 3–space without self-intersections.

Considering particularly complicated knots in this form can be extremely dif-
ficult, so ideally we would like a lower dimensional form in which to discuss
knots.

Definition 2. The shadow of a knot is its projection into R2.

Definition 3. A diagram is a shadow with crossing information (indicating
which strand passes over and which under) at the vertices.

Example 1. The following are knot diagrams:

(i) The left trefoil:

(ii) The right trefoil:
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(iii) The unknot:

(iv) The figure eight:

The definition of a diagram can be stated more precisely as:

Definition 4. A diagram is a smooth 4–valent graph in R2 that is the shadow of
a knot, with all vertices transverse and with crossing information (distinguishing
between over and under) at vertices.

Example 2. The following are not diagrams:

(i) This is not a loop:
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(ii) This has a cusp, a 2–valent vertex:

(iii) This has a 6–valent point, so we don’t have accurate crossing information.

(iv) This is not the shadow of a knot.

Definition 5. A link is the union of disjoint knots.

Example 3. The final object in the previous example is called the left Hopf
link. Other links are:
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(i) The unlink:

(ii) The Whitehead link:

(iii) Borromean rings:

Definition 6. The knots comprising a link are called the components of the
link.

Example 4. A knot is a link with one component.

Definition 7. A knot has two possible orientations, clockwise or counter-
clockwise.

Example 5. Observe orientations on the unknot:
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and on the right trefoil:

A link of n components has 2n possible orientations, as we have 2 choices of
orientation for each of the n knots. We adopt the convention that if a knot or
link is oriented then every crossing of the diagram receives a handedness:

The first is right-handed and we say it has sign +1. The second is left-handed
and we say it has sign −1.

Example 6. Every crossing in a diagram of DNA is right-handed.

Definition 8. Suppose that D is an oriented diagram. Define the writhe of D,
w(D), to be the sum of signs of crossings in D.

Example 7. The standard diagrams of the unknot and the figure eight shown
above have writhe 0. The diagrams of the right-trefoil above have writhe −3
independent of the orientation. In fact, writhe is independent of the orientation
in general.

Definition 9. Suppose K, K ′ are components of a link L. Define:

lk(K, K ′) =
1
2

∑
sign(c)

where c ranges over crossings between K and K ′.

Example 8. Consider:
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Then lk(K1,K3) = 0, lk(K1,K2) = 3 and lk(K2,K3) = −2.

Remark. lk(K, K ′) ∈ Z for any loop components.
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Chapter 2

Reidemeister Moves

Definition 10. A knot K is isotopic to a knot K ′ (we write K w K ′) if there
is a continuous motion of R3 mapping K onto K ′.

Remark. This is an equivalence relation.

Example 9. Let U = {(x, y, 0)|x2 + y2 = 1}. This is isotopic to any simple
closed curve in a plane embedded into R3.

Definition 11. The knot type of a knot K is:

[K] = {K ′ a knot|K ′ w K}

Both of the previous definitions apply to links. We now give some foundational
results, mostly due to Reidemeister. We state the results for links, as knots are
simply a special class of link.

Theorem 1 (Existence Theorem). For every link L there is an isotopic link L′

such that πxy(L′) is a diagram. πxy : R3 → R2 is projection to the xy–plane,
adding crossing information.

Lemma 2 (Existence of a Link). For every diagram D there is a link L so that
πxy(L) = D.

Proof. Given D a diagram in R2, include R2 into R3 as the xy–plane. We need
to “fix” the crossings. Pick a disk B2 about a crossing. Let B3 be a ball with B2

as an equatorial disk. Label the arcs leaving the crossing as NE, NW, SE and
SW. WE have crossing information, so assume without loss of generality that
the SW to NE arc goes over. We change this arc so that it traverses over the
surface of B3 and change the other arc so it traverses under the surface of B3,
rounding the corners to avoid cusps. This gives the required link.

Lemma 3 (Uniqueness of a Link). If L,L′ are links and πxy(L) = πxy(L′) as
diagrams, then L w L′.
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In order to simply study diagrams instead of loops, we must rephrase isotopy
in this form. Suppose {Kt|t ∈ [0, 1]} is an isotopy between K and L, that is
K0 = K, K1 = L and Kt+ε is a small deformation of Kt, giving K w L. Let
Dt = πxy(Kt). The problem is that Kt may not project to a diagram for some
t.

Definition 12. Let Σ be the set of t ∈ [0, 1] such that πxy(Kt) is not a diagram.

Remark. Generically, Σ is finite, and the elements are of three types; in which
the diagrams have cusps, self-tangencies or triple-points. We observe:

Definition 13. If D,D′ are diagrams related as t ± ε in the above remark,
then D,D′ differ by a Reidemeister move, named R1 for the cusp, R2 for the
self-tangency and R3 for the triple point.

Definition 14. Say that Dt and Dt′ differ by R0 if [t, t′] ∩ Σ = ∅.

Example 10. Take a trefoil:

Apply R0:
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then R2:

then R3:

then R1:
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then R2:

and finally R1:

Remark. The operation above can be defined in general as R∞ by the figure:
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Every R∞ is a sequence of R0, R1, R2 and R3 moves.

Theorem 4 (Reidemeister). Suppose K, K ′ have projections D,D′. Then K w
K ′ iff D can be taken to D′ by a sequence of Reidemeister moves.

Definition 15. Any function φ : K → Z, where K is the set of knot types, is
called a knot invariant.

Proposition 5. Suppose we have a function on D, the set of diagrams with one
component, ϕ : D → Z, and suppose that if D

Ri→ D′ then ϕ(D) = ϕ(D′). Then
by the Reidemeister theorems, ϕ ascends to be a knot invariant.

Remark. The idea here is that knots up to isotopy are in some sense the same
as diagrams up to Reidemeister moves.

We wish to understand knots and links via their invariants.

Theorem 6. If L,L′ are link diagrams and L
Ri→ L′ then there is a bijection of

components Ci → C ′
i of L and L′ such that lk(Ci, Cj) = lk(C ′

i, C
′
j).

Proof. It suffices to check the Reidemeister moves. R1 does not introduce cross-
ings between distinct components, so the linking number is unchanged. R2

introduces a crossing of each handedness, so the linking number is unchanged.
Observing the diagram of R3, it is easy to construct a bijection between crossings
that preserves the handedness and the components involved.

So linking number is a link invariant.

Example 11. The Hopf link has linking number ±1 (depending on orientation)
and the Whitehead link has linking number 0. So the Hopf link is not isotopic
to the Whitehead link, and the Hopf links with different orientations are not
isotopic.
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Chapter 3

Link Colouring

Definition 16. a ⊆ D is an arc of D if it is a maximal path in the graph with
all crossings over. A(D) is the set of arcs in D.

Definition 17. A function x : A(D) → Z/nZ is a colouring (modulo n) if at
every crossing:

we have 2x(a) ≡ x(b) + x(c) mod n.

Example 12. The following is a colouring modulo 3:

13



and the following is a colouring modulo 5:

Definition 18. A colouring x is trivial if it is a constant function.

Remark. A constant function is always a colouring, as 2p ≡ p+ p mod n∀ p, n.

Lemma 7. The set of colourings under addition is a group.

Lemma 8. The set of trivial colourings under addition is isomorphic to Z/nZ.

Definition 19. We define Col(D, Z/nZ) = Coln(D) to be the set of colourings
quotiented by the trivial colourings.

Theorem 9. If D
Ri→ D′ and Coln(D) 6= {0} then Coln(D′) 6= {0}.

Proof. Let m be the colour of an arc. Performing R1 on the arc gives us two arcs
of colour m, so we do not change the trivialness or otherwise in either direction.
Given two arcs of colours m and n respectively, when we perform R2 we get a
third arc which must be coloured 2n−m. If n = m then 2n−m = m also, so
both colourings are trivial. With R3 we only change the colouring of one arc,
so both colourings are either trivial or both are non-trivial.
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Corollary 10. If D is a diagram of K ∈ [U ] (that is a diagram of the unknot)
then Col(D) = 1.

Corollary 11. The unknot is not isotopic to the trefoil or to the figure-eight,
as both have non-trivial colourings.

Lemma 12. If x is a colouring of D, and x is non-trivial, then for any arc
a ∈ A(D) there is a non-trivial colouring y : A(D) → Z/nZ so that y(a) = 0.

Proof. Define y(b) = x(b) − x(a) for any arc b ∈ A(D). Clearly y(a) = 0.
Coln(D) is a group, so y is a colouring. If x(c) 6= x(d) then:

y(c) = x(c)− x(a) 6= x(d)− x(a) = y(d)

Example 13. Take the figure-eight knot, and colour two arcs that meet at a
crossing 0 and p respectively, assuming p 6= 0. We must complete the colouring
as below:

Considering crossings, we find 5p ≡ 0. So for a non-trivial colouring in any
modulus n, 5p ≡ 0 mod n. Hence n | 5p, and so either 5 | n or n | p. To
see this, 5p ≡ 0 mod n iff ∃ k such that 5p = nk. Since 5 is prime, 5 | n or
5 | k. If 5 | k, then p = nk

5 , and k
5 ∈ Z, so n | p. So any non-trivial colouring

modulo n of the figure-eight must have 5 | n as if n | p then p ≡ 0 mod n and
the colouring was trivial. If D and D′ differ by a Reidemeister move and D has
a non-trivial 3–colouring then so does D′. We saw in an earlier example that
a diagram of the trefoil has a non-trivial 3–colouring, and this diagram of the
figure-eight cannot. So the trefoil is not isotopic to the figure-eight.

Proposition 13 (Colouring Links). Suppose L has n ≥ 2 components. Then
L has a non-trivial 2–colouring.

Proof. In a 2–colouring we must colour the crossings in one of the following four
ways:
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Thus every component is monochromatic (note that a knot only has trivial
2–colourings).

Definition 20. A link is split if L does not intersect the yz–plane and L meets
the sets:

H+ = {(x, y, z)|x > 0} H− = {(x, y, z)|x < 0}

Definition 21. L is splittable if L w L′ with L′ split.

Example 14. The Hopf link is not splittable. If the Hopf link was isotopic to
a split link it would have linking number 0, which it does not.

Proposition 14. If L is splittable then L′ has non-trivial colourings in every
modulus.

Proof. Split L. Colour each piece L+ = L ∩H+ and L− = L ∩H− monochro-
matically, and then undo the Reidemeister moves, to rejoin the two links.

Corollary 15. The Borromean rings are not splittable as they do not have a
non-trivial colouring in every modulues.

Example 15. Consider the Whitehead link:
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We find that:

x0 + x1 = 2x3

x1 + x2 = 2x4

x2 + x3 = 2x0

x3 + x4 = 2x2

x4 + x2 = 2x1

Say x0 = 0, x3 = p. Then we get:

x1 = 2p

x2 = −p

x4 = −3p

8p = 0

Theorem 16. Suppose that D is a diagram. Then the system of colouring
equations has a dependency.

Remark. This is similar to the earlier lemma, that for any arc a, if there exists
a non-trivial colouring, then there is one with x(a) = 0.

Remark. In fact, we will show the stronger result that we can remove any one
of the equations without losing information.

Recall that the shadow of a knot is the projection onto the xy–plane, forgetting
the crossing information. The crossings are the vertices of the shadow, and the
shadow minus the vertices are the edges.

Proposition 17. The number of edges is twice the number of vertices whenever
we have at least one vertex.

Definition 22. If S is a shadow then the components of R2 \S are called faces,
or regions.

Definition 23. Two regions are adjacent if their boundaries share an edge.

Proposition 18. Every shadow has a checkerboard colouring, that is a 2–
colouring of the regions so that adjacent regions have different colours.

Proof. Define the parity of a region e(R) ≡ |L∩S| mod 2 where L is a ray based
at a point x ∈ R and L is transverse to S, so that there are no tangencies or
triple points. We first show that parity is well-defined. Observe that if x, y ∈ R
then there is a polygonal path P = {x = x0, x1, x2, ..., xn = y} in R connecting
x and y. Let e(x, L) be the parity of L based at x. Suppose L′ is also based at
x. We have {Lt|t ∈ [0, 1]}, a family of rays such that L0 = L, L1 = L′, Lt is
based at x for all t, and Lt+ε is a small rotation of Lt. Let:

Σ = {t ∈ [0, 1]|Lt not transverse to S}
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If at t, Lt is tangent to S, then at t− ε there were no intersections with S local
to the tangency, and at t + ε there were two, or vice versa. If at t, Lt has a
triple point, then there are two local intersections at both t+ε and t−ε. So the
parity does not change as t passes through Σ. Hence e(x, L) is independent of the
choice of L. Also if x, y ∈ R then e(x) = e(y); let P = {x = x0, x1, ..., xn = y}
be a polygonal path. We make small permutations to xi such that the ray Li

based at xi and through xi+1 is transverse. Observe that Li and Li \ [xi, xi+1]
give the same parity because [xi, xi+1] ∩ S = ∅. So:

e(xi, Li) = e(xi+1, Li \ [xi, xi+1]) = e(xi+1, Li+1)

as above. So e(x) = e(y). So e(R) is well-defined. We now claim that if R,R′

are adjacent then e(R) ≡ e(R′) + 1. To see this, pick x ∈ R and y ∈ R′ close
to the shared edge, so that the ray L based at x and through Y is transverse.
Since we may arrange that [x, y] is a single point, the result is clear.

A shadow can be connected or disconnected, in the normal sense. A discon-
nected shadow implies that the link is splittable.

Definition 24. We say that a shadow D is reducible if there is a region R
which is self-adjacent across a vertex.

Theorem 19 (Jordan Curve Theorem). Any embedded loop in R2 is planar
isotopic to a round circle.

Proposition 20. If a link L has diagram D then L is isotopic to a link L′ with
irreducible, or reduced, diagram D′.

Proof. If D is reducible then there is a loop γ contained in some region R except
for at a single crossing of the diagram. γ bounds a disk B. Let A be the cylinder
A = π−1

xy (B). Inside of A, rotate L by π, perpendicular to the xy–plane. This
reduces the number of crossings by 1. Repeat until D is reduced.

Around each crossing we may draw a small square that contains no other cross-
ings. Orient these squares anti-clockwise. Pick a 2–colouring of the faces of D.
Near the crossing, we have two choices for how to colour opposite pairs of faces.
We now orient the edges of the square toward one colour, which we call light;
the other colour will be called dark.

Example 16. Consider the following diagram:
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We now consider the crossings. We add the arcs with positive sign if the orien-
tation of the square agrees with the orientation of the edge passing through the
arc, and with negative sign if they disagree. So we obtain:

(i) −x0 + x2 − x1 + x2 = 0

(ii) +x1 − x0 + x2 − x0 = 0

(iii) −x2 + x0 − x3 + x0 = 0

(iv) +x3 − x2 + x0 − x2 = 0

Or in matrix form:
−1 −1 2 0
−2 1 1 0
2 0 −1 −1
1 0 −2 1




x0

x1

x2

x3

 =


0
0
0
0


Each row is a colouring equation, and adding them gives 0. So we have a
dependency.

We now show this in general, proving the earlier theorem starting that there
was a dependency in the colouring equations.

Proof. Consider an arc between two squares. On one side of the arc the region
is coloured light and on the other side the region is coloured dark. So the edges

19



at the end of the arc are oriented in the same direction, but are on opposite
sides of their respective squares. So they contribute the value of the arc with
positive and negative sign respectively.

Definition 25. An overcrossing component C ⊆ D is a component which only
crosses over, so it consists of a single arc in a loop.

Proposition 21. If we have an overcrossing component then C is splittable.

Lemma 22. If there are no overcrossing components then the number of arcs
in D is equal to the number of crossings, so the colouring matrix is square.

Proof. Orient D and assign every arc to the crossing at its head. This is a
bijection.

Definition 26. Let D be a diagram without overcrossing components. Let A+

be the colouring matrix. Let A be the matrix obtained from A+ by deleting
any one column and any one row.

Example 17. For the trefoil we obtain the colouring equations:

(i) x0 + x1 − 2x2 = 0

(ii) x1 + x2 − 2x0 = 0

(iii) x2 + x0 − 2x1 = 0

Then:

A =

 1 1 −2
−2 1 1
1 −2 1


We may take:

A =
[

1 1
−2 1

]
which has determinant 3. We find that any choice of A gives a determinant of
±3.

Definition 27. If L is a link with diagram, define det(L) = |det(A)|, where A
is any reduced colouring matrix for D. This is the determinant of L.

Definition 28. The k–th twist knot Kn is:
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where the a twist box marked n contains n right twists (a negative integer
indicates left twists).

Example 18. Taking a Thorsten geometric limit of k–th twist knots, we get:

which is the Whitehead link. We can obtain the Borromean rings in a similar
way by replacing the −2 twist box with an l twist box and taking both k and l
to ∞.

Proposition 23. D has a colouring mod n iff there are x, b ∈ Zd solving Ax =
nb, where d = |A(D)| − 1.

Now we have two cases. If det(A) = 0, pick y ∈ Qd in the kernel, and let yi = pi

qi

in lowest form. Let Q = lcm{qi} and let z = Qy. Note that gcd{zi} = 1 as
the yis were in lowest form. As Az = 0 and z 6≡ 0 mod n, D has non-trivial
colourings in all moduli n ≥ 2. If det(A) 6= 0, fix any b, n. By Cramer’s rule:

xi =

∣∣ A1 A2 · · · nb · · · Ad

∣∣∣∣ A1 A2 · · · Ai · · · Ad

∣∣
gives x solving Ax = nb. More simply:

n
∣∣ A1 · · · b · · · Ad

∣∣
det(A)
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If det(A) = ±1 then D only has trivial colourings. If |det(A)| 6= 1 then let
n = |det(A)|. We may start guessing various bs to find a colouring.

Example 19. Consider the 62–knot:

We obtain the colouring matrix:

A+ =


1 1 0 0 −2 0
0 1 1 0 0 −2
−2 0 1 1 0 0
0 0 −2 1 1 0
0 −2 0 0 1 1
1 0 0 −2 0 1


We may take the reduced matrix as:

A =


1 1 0 0 −2
0 1 1 0 0
0 −2 1 1 0
−2 0 0 1 1
0 0 −2 0 1


det(A) = 11. We find that x = (0, 3, 6, 5, 7, 10) is a colouring.

Definition 29. A diagram is alternating if every arc crosses over exactly one
crossing.

Example 20. The usual diagrams of the trefoil and the 62–knot are alternating.
The following diagrams of the unknot and unlink are non-alternating:
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Definition 30. P (p, q, r) is the (p, q, r)–pretzel knot:

with Thorsten geometric limit:
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as p, q, r →∞. This can be drawn equivalently as:

3.1 Smith Normal Form

Recall that if A ∈ Md(Z) then there are R,C, B ∈ Md(Z) such that R and C
are isomorphisms, B is diagonal and B = RAC.

Theorem 24. Coln(D) 6= {0} iff gcd{n, det(D)} > 1.

Proof. Let A+ and A be defined as above. Smith normal form gives R,C, B
such that:

Zd A
> Zd

Zd

C

∧

B
> Zd

R
∨
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commutes, R and C are isomorphisms and B is diagonal. Reducing mod n we
get:

Zd
n

An
> Zd

n

Zd
n

Cn

∧

Bn

> Zd
n

Rn
∨

which must also commute. So Cn is an isomorphism and sends ker(Bn) to
ker(An). Since Bn is diagonal, ker(Bn) 6= {0} iff some diagonal entry bi in Bn

has gcd{bi, n} > 1. Now det(A) = det(RAC) = det(B) =
∏d

j=1 bj . Thus ∃ a
non-trivial colouring mod n iff ∃bi such that gcd{bi, n} > 1, iff gcd{det(A), n} >
1.

Thus we now have a method for computing colourings.

Example 21. Consider the following link:

Using our old methods we find that if x is a non-trivial colouring mod n then
2|n. Using our new method we find the colouring matrix:

A+ =


2 0 −1 −1
0 2 −1 −1
−1 −1 2 0
−1 −1 0 2


We may take the reduced matrix as:

A =

 2 −1 −1
−1 2 0
−1 0 2


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Using row and column operations: 2 −1 −1
−1 2 0
−1 0 2

 →
 1 1 1

0 3 −1
0 1 1


→

 1 0 0
0 3 −1
0 1 1


→

 1 0 0
0 1 −3
0 1 1


→

 1 0 0
0 1 −3
0 0 4


→

 1 0 0
0 1 0
0 0 4


so det(A) = ±4. Hence det(D) = |det(A)| = 4.

Example 22. Consider the Whitehead link:

with colouring matrix:

A+ =


2 0 −1 0 −1
0 2 0 −1 −1
−1 −1 2 0 0
−1 −1 0 2 0
0 0 −1 −1 2


We may reduce to:

A =


2 0 0 −1
−1 −1 0 0
−1 −1 2 0
0 0 −1 2


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Using row and column operations:
2 0 0 −1
−1 −1 0 0
−1 −1 2 0
0 0 −1 2

 →


1 0 0 −1
−1 −1 0 0
−1 −1 2 0
2 0 −1 2



→


1 0 0 0
0 −1 0 −1
0 −1 2 −1
0 0 −1 4



→


1 0 0 0
0 1 0 0
0 0 2 0
0 0 −1 4



→


1 0 0 0
0 1 0 0
0 0 1 −4
0 0 2 0



→


1 0 0 0
0 1 0 0
0 0 1 −4
0 0 0 8



→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 8


so det(D) = 8.

Example 23. Consider the boundary link L:
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We use the symmetries to find the above colouring quickly. We have the colour-
ing:

This is a colouring over Z. So L has colourings in every modulus. Hence
det(L) = 0.

Remark. The unlink also has determinant 0, but clearly L above is not the
unlink.

Example 24. Consider the pretzel knot P (−2, 3, 5):

28



On three arcs we have two labels, so we find:

(i) 2x = 5y

(ii) 3y = x

(iii) 8y = 3x

(iii) is dependent on (i) and (ii), as expected. We find:

5y = 6y

so y = 0. Then x = 3 · 0, so x = 0. Thus P (−2, 3, 5) only has trivial colourings.
Hence det(P ) = 1.

Remark. The unknot U has deteminant 1, but clearly P 6w U .

Suppose a diagram D has no overcrossing component. Thus |D| = d + 1 is the
number of arcs, which is equal to the number of crossings.

Definition 31. The colouring group of D (and so of L) is Col(D) = Col(L)
given by:

Col(D) := 〈x1, ..., xd|xi + xj = 2xk〉

where xi, xj and xk meet at a crossing with xk the overcrossing arc.

Example 25. For the trefoil, we get the group:

〈x1, x2|x2 = 2x1, x1 = 2x2, x1 + x2 = 0〉 ∼= 〈x1| − x1 = 2x2〉
∼= 〈a|3a = 0〉
∼= 〈a|3a〉
∼= Z/3Z

Proposition 25. Col(D) is an isotopy invariant, or more precisely, the iso-
morphism type of Col(D) is an isotopy invariant.
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Col(L) is a cokernel:

Zd AT

> Zd > Col(L) > 0

where the first Zd refers to the crossings and the second to arcs. B = RAC so
BT = CT AT RT . So we have:

Zd AT

> Zd > Col(L) > 0

Zd

RT

∧

BT

> Zd

CT

∨
> Zb1 × Zb2 × · · · × Zbd

isomorphism

∨
> 0
∨

Here Zb = Z/bZ.

Corollary 26.

det(L) =
{
|Col(L)|, |Col(L)| < ∞
0, |Col(L)| = ∞

Corollary 27. Since Col(L) is an isotopy invariant, so is det(L).

Example 26. Consider the following diagram of the unlink:

We find the group 〈a, b, c|a + c, b− 2a〉 ∼= 〈a, c|a + c〉 ∼= 〈a〉 ∼= Z. The boundary
link from the earlier example has colouring group Z × (Z3)2, so it is not the
unlink, and hence not splittable, as each component is isotopic to the unknot.

Example 27. The 61–knot:
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and the 946 = P (−3, 3, 3) both have determinant 9, but Col(61) = Z9 and
Col(946) = (Z3)2.

Proposition 28. If D is a diagram of L then the number of inequivalent colour-
ings mod n is

∏d
i=1 gcd{n, bi}.
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Chapter 4

Mirrors and Invertability

4.1 Mirror Images

Definition 32. Suppose L is a link and M ⊆ R3 is an affine plane. Define
m(L) to be the reflection of L through the plane M .

Note. m(m(L)) = L.

Proposition 29. The isotopy class [m(L)] is independent of the choice of M .

Proof. Suppose M,M ′ are any two planes. Let m(L) and m′(L) be the resulting
links. Let ϕ be the result of reflecting in M and then in M ′. We have two cases.

Case 1: M and M ′ are parallel. If M and M ′ are parallel then ϕ is a translation
by distance 2dR3(M,M ′) perpendicular to M in the direction from M to
M ′.

Case 2: M ∩ M ′ is a line. ϕ is a now a rotation about M ∩ M ′ through angle
2 ̂(M,M ′), the dihedral angle.

In either case, ϕ is a rigid motion of R3 so m(L) is isotopic to m′(L) and ϕ
sends m(L) to m′(L).

Proposition 30. If L0 w L1 then m(L0) w m(L1).

Proof. If {Lt|t ∈ [0, 1]} is an isotopy between L0 and L1 then:

{m(Lt)|t ∈ [0, 1]}

is the desired isotopy.

Definition 33. Let D be the diagram D with all crossings reversed.

Proposition 31. If D is a diagram of L then D is a diagram of m(L).∗

∗We sometimes write D as m(D).
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Proof. We have a canonical form for L given earlier, where the arcs lie in the
xy–plane, except at crossings, where they traverse over and under a small ball
around the crossing. Reflecting this in the xy–plane preserves the arcs and
reverses the crossings.

Definition 34. Say that L is achiral if L w m(L). Else L is chiral.

Example 28. The figure eight is achiral, as are the knots 63, 83, 89, 812, 817

and 818 from the standard knot tables.

Remark. Chirality dominates as the number of crossings goes to infinity.

Proposition 32. Col(L) ∼= Col(m(L)).

Proof. Pick M to be a vertical plane disjoint from L. We have a bijection
between crossings and arcs in D and m(D), and so this induces an isomorphism
on the colouring group.

4.2 Invertability

Definition 35. Suppose L is an oriented link. Let r(L) = −L be the same link
with all orientations reversed.

Definition 36. L is invertible if L w r(L) = −L.

Proposition 33. If P = P (p1, p2, p3, ..., pn) is a pretzel knot and some pi is
even, then P w r(P ).

Example 29. Up to nine crossings, only 817, 932 and 933 are not invertible.
However, as the number of crossings goes to infinity, non-invertability domi-
nates.

Recall that D is alternating if every overcrossing arc crosses over exactly one
crossing.

Example 30. The reef knot:
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is non-alternating. However, the granny knot:

is alternating.

Proposition 34. Every one-component shadow admits two realizations as an
alternating diagram.

Proof. We may label all crossings of D as follows. Pick a point and a direction.
Number the crossings, each one twice, as you arrive at each. We claim that every
crossing gets one even and one odd number. Recall that there is a checkerboard
colouring of D. Orient dark regions anticlockwise and light regions clockwise.
Label the boundary edges 0 and 1 at each end in the direction of the orientation,
so the orientation points 0 to 1. At a crossing, we get eight labels, that agree
across the edges. In this way, the edges across each crossing get two labels of
opposite parity. Now we get an alternating diagram by insisting on odd edges
passing over or under at crossings.

Note. We find a function f : {1, 3, 5, ..., 2c − 1} → {2, 4, ..., 2c} where c is the
number of crossings, called the code of the diagram.

Example 31. The diagram:
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gives rise to the code [4, 6, 2].

Note. We find that given a code, we can generate a diagram. In fact, every
code, up to the condition that for every interval [i, j] ∩ {1, 2, ..., 2c} we have:

f({1, 3, ..., 2c− 1} ∩ [i, j]) 6⊆ {2, 4, ..., 2c} ∩ [i, j]

gives a diagram of a unique knot type.

Proposition 35. Up to n crossings there are at most n!2n knot types.
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Chapter 5

The Alexander Polynomial

Recall that during the discussion of colourings we used the ring Z/nZ. Instead
we may use the ring of Laurent polynomials Z[t, t−1].

Definition 37. A Laurent polynomial is a finite sum ∆(t) =
∑n

k=−n aktk where
ak ∈ Z.

Definition 38. We say ∆(t) is symmetric if ∀ n, an = a−n.

Example 32. ∆(t) = t− 3 + 1
t is a symmetric Laurent polynomial.

We cannot usually use Z[t, t−1] so we use Z[t, t−1]/∆(t) for some ∆(t). The new
colouring equation is:

(1− t)α + tβ − γ ≡ 0 mod ∆(t)

where α is the overcrossing arc, β is the left undercrossing arc (with respect to
the orientation of α) and γ is the right undercrossing arc. We sometimes write:

Key(t) =
[

α β γ
1− t t −1

]
Notice if we set t = −1 we get:

2α(−1)− β(−1)− γ(−1) ≡ 0 mod ∆(−1)

which is the old colouring equation.

Example 33. Consider the figure-eight knot:
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We get the colouring matrix:

A+ =


1− t −1 t 0

0 1− t t −1
t 0 1− t −1
t −1 0 1− t


Notice that 1− t + t− 1 = 0, so the sum of the columns is the zero vector, but
the same is not true of the rows. Deleting a row and column:

A =

 0 1− t t
t 0 1− t
t −1 0


Then we get:

det(A) = 0 + t(1− t)2 + (−t2)− (0 + 0 + 0)

= t3 − 3t2 + t

= t2
(

t− 3 +
1
t

)
∆k(t) = t− 3 + 1

t is the Alexander polynomial of the figure-eight knot.

Remark. This polynomial is a knot invariant. ∆k(t) is only defined up to mul-
tiplication by a unit of Z[t, t−1].
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Definition 39. For a ring R, u ∈ R is a unit if ∃ w ∈ R such that uw = 1.

Note. The units of Z[t, t−1] are ±tk for k ∈ Z.

Observe that for the figure-eight, the Alexander polynomial was symmetric.

5.1 The Winding Number

Suppose x ∈ R is a point in a region R of D. Choose a generic ray L and orient
L away from x. Compute w(R), the winding number of D about R:

w(R) =
∑

C∈L∩D

sign(c)

Proposition 36. w(R) is independent of the choice of L.

Proposition 37. w(R) ≡ e(R) mod 2.

Proposition 38. If R,R′ are disjoint then |w(R)− w(R′)| = 1.

Now we label every region R with tw(R). So around each crossing we see:

We draw a small square around each crossing and orient edges from smaller to
larger winding number.

Example 34. We do this for the figure eight:
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For each arc at every crossing we add the value that the edge points towards,
multiplying by −1 when the orientation of the edge differs from the orientation
of the square, to get: 

t− 1 0 −t 1
1 t−1 − 1 0 −t−1

−t 1 t− 1 0
0 −t−1 1 t−1 − 1


Now all rows and columns sum to zero.

At a general crossing we have:

We find that:

(−tw + tw−1)xi + twxj − tw−1(xk) = 0 ⇐⇒ tw−1((1− t)xi + txj − xk) = 0
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and so the coefficients in a row sum to zero. The columns sum to zero by the
same reasoning as for the colouring matrix. Hence if A+(t) is the Alexander
matrix and A(t) is th result of deleting any one row and any one column then
det(A(t)) ≡ ∆k(t) is independent of the choice of row or column. If we replace
t by t−1 then:

Key(t−1) =
[

α β γ
1− 1

t
1
t −1

]
Multiply by −t, as this does not change the determinant, and then:

−t Key(t−1) =
[

α β γ
1− t −1 t

]
So we get the mirror image of the usual configuration. So we find ∆m(K)(t) ≡
∆K

(
1
t

)
up to units. Reversing the orientation also gives:[

α β γ
1− t −1 t

]
So up to units, ∆r(K)(t) ≡ ∆m(K)(t) ≡ ∆K

(
1
t

)
.

Theorem 39. ∆K(t) ≡ ∆K

(
1
t

)
up to units.

So ∆K(t) is symmetric, and is equivalent (up to units) to the polynomial for
the mirror image and for the reverse. Note that:

Key(−1) =
[

α β γ
2 −1 −1

]
which is the colouring equation. So |∆K(−1)| = det(K).

Proposition 40. Suppose L is split. Then ∆L(t) ≡ 0.

Proof. We have:

A+ =
[

B+ 0
0 C+

]
A =

[
B 0
0 C+

]
So ∆L(t) = det(A) = det(B) det(C+) = 0 as C+ is unreduced.

Theorem 41. ∆K is a link invariant.

Corollary 42. If L is splittable then ∆L(t) ≡ 0.
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Chapter 6

Connect Sums

Definition 40. Suppose K, L are oriented knots. The connect sum K]L is
defined by joining an arc of K and an arc of L by an arc α. Form K]L be
doubling α, removing a neighbourhood of α in K and L, and joining the two
arcs along the copies of α, preserving the orientation.

Theorem 43. [K]L] depends only on [K] and [L].

Sketch Proof. There are two steps. First we show that the connect sum is
independent of the choice of α, and then that it is independent of the choice of
K ′ ∈ [K].

Step 1: Suppose α′ is some other arc joining to a different point on K. We shrink
L to be very small. We pull it along α′ so it is very close to K. Then
slide L along K to the end point of α. Then unreel along α and expand
L again.

Step 2: If K ′ w K then K ′]L w K]L. Shrink L and pull it along α as above.
Apply the isotopy taking K to K ′, carrying along L. Slide L to the
correct position, unreel and expand.

Proposition 44. We have:

(i) K]U w K.

(ii) K]L w L]K.

(iii) K](L]M) w (K]L)]M .

Remark. Inverses do not exist in general.

Definition 41. K is prime if K w L]M implies L w U or M w U .

Example 35. The reef and granny knots are not prime, but the trefoil and
figure eight are.

Theorem 45. ∆K]L = ∆K∆L.
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Proof. Recall that if A is the reduced matrix then det(A) = ∆K is the polyno-
mial. We compute K]L with:

The key for dn is given by: [
x0 z yn

1− t t −1

]
so A has block diagonal form (after deleting the row for c0 and the column for
x0).

A =



B 0

0
...
0

0 C

0
...
0

0 · · · 0 0 · · · 0 −1 t


where B is the reduced matrix for K and C is the reduced matrix for L. Hence:

∆K]L = det(A) = t det(B) det(C) = t∆K∆L ≡ ∆K∆L

Corollary 46. det(K]L) = det(K) det(L).

As a consequence, since K]U w K, ∆K∆U = ∆K so ∆U = 1. We find that
the Alexander polynomials of the reef and granny knots agree, so the invariant
cannot distinguish them.

42



Chapter 7

Bridge Number

Definition 42. Suppose that D is a diagram. Define the bridge number of D,
b(D), to be the number of overcrossing strands.

Remark. If D is alternating, b(D) is the number of crossings of D.

Definition 43. The bridge number of K is:

b(K) = min{b(D)|D a diagram of K ′ w K}

This, as with c(K), is difficult to compute.

Note. Bridge presentation (that is any diagram realizing b(K)) may be enor-
mously more complicated than a diagram relaizing the crossing number.

Definition 44. A 2n–plat diagram in the xy–plane has n maxima (all at the
same y–height), n minima (all at the same y–height) and no other maxima or
minima with respect to the y co-ordinate.

Proposition 47. For all knots K, ∃n ∈ N and a knot K ′ w K such that K ′ is
in 2n–plat position.

Sketch Proof. Let D be any diagram for K. Pull all local maxima up and all
local minima down using R2 moves.

Proposition 48. K has a 2–plat diagram iff K w U .

Proof. The (⇐=) direction is trivial. Suppose K has a 2–plat diagram. Locate
the highest crossing, and use an R1 move to untwist it. The result follows by
induction on the number of crossings.

Proposition 49. For any knot K, let n be half the minimal plat number. Then
n = b(K).
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Proof. We first show that n ≤ b(K). Let D be a minimal bridge diagram for K.
Lift all bridges slightly out of the xy plane. This creates b(K) maxima. Pull
the other arcs down to create b(K) minima. Hence n ≤ b(K). Now we show
b(K) ≤ n. Start with a minimal plat diagram for K, so it has 2n plats. Order
the crossings by height. Drag the highest crossing so it goes under a small arc
about one of the maxima. Do this for each crossing in turn. Thus b(K) ≤ n.

Remark. There are only finitely many knots with crossing number less than or
equal to n. There are infinitely many knots with bridge number at most n, if
n ≥ 2.

7.1 Flypes

Theorem 50. The general 4–plat diagram:

is isotopic to a knot with all ci = 0.

To prove this, we need:

Definition 45. A flype is an isotopy of the form:

Remark. In general, we have that:

if p is even, and:
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if p is odd.

We may also perform flypes when there are no crossings on either side, to create
twists of the same number but opposite signs on each side.

Proposition 51. We have an isotopy taking:

to:

if bc is even, or the same with F upside-down and back-to-front if bc is odd.

Proof. Using an R2–move, we take the original arrangement to:

Now by a flype on F and the b twist box:
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By a flype on F b times we get:

if b is even, or the same diagram with F upside down as well as backwards if b
is odd. By R2 and a flype, we get:

if b is even and the same diagram with F upside-down (but not backwards) if b
is odd. Now if we do this c−1 more times we obtain the desired result. If c < 0
the result is analogous.

We may now prove the theorem by repeatedly applying the proposition, and
then finishing with R1 moves.
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Chapter 8

Braids

If we cut off the minima and maxima from a plat, we find a braid.

Example 36.

is a braid σ. It induces a permutation:

πσ =
(

1 2 3 4
1 3 4 2

)
= (2, 3, 4)

Example 37. The canonical braid is:

Formally:

Definition 46. A braid is a collection of strands σ connecting the points (i, 0)
to (πσ(i), 1) such that dσy

dt > 0.
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Definition 47. σ w τ if σ and τ are isotopic through braids.

Definition 48. If σ, τ are braids with the same number of strands, we may
stack them by joining the end-points of σ to the start points of τ , to obtain
σ · τ .

Note. σ · τ 6w τ · σ is general.

Definition 49. Bn is the n–strand braid group, the set of n–strand braids up
to isotopy, together with the stacking operation above.

Example 38. B1 is the trivial group. B2
∼= Z, the infinite cyclic group. B3

can be understood, but B4 and higher are extremely complicated.

We check the group axioms for Bn:

(i) There is an identity element, the trivial braid.

(ii) If σ, τ are braids then σ · τ again has d(σ·τ)y

dt > 0 so is a braid.

(iii) Associativity is obvious.

(iv) Inverses are given by mirror images.

We now give a second definition of the braid group.

Definition 50. Let σi be the braid of one crossing between strands i and i+1,
with i on top. Then:

Bn
∼=

〈
σ1, ..., σn−1

∣∣∣∣ σi · σj = σj · σi, |i− j| ≥ 2
σi · σj · σi = σj · σi · σj , |i− j| ≤ 1

〉
Note. The natural map π : Bn → Σn, where Σn is the symmetric group on n
elements, is an antihomomorphism, that is πσ·τ = πτπσ.

Definition 51. Suppose σ ∈ Bn is a braid. Let Lσ denote the braid closure of
σ, formed by closing each strand without introducing additional crossings.

Definition 52. Suppose that L is an oriented link. Then the braid index of L
is given by:

br(L) = min{n|∃ σ ∈ Bn with Lσ w L}

To show that br(L) is well-defined, we need:

Theorem 52 (Alexander). Every link is the closure of some braid.

Example 39. br(L) = 1 iff L w U . br(L) = 2 iff L is a (2, p)–torus link.

Remark. It is an open problem to find an algorithm that, given L, computes
the braid index of L. Computing b(L) is also open, but perhaps easier.

Proposition 53. ∀ L, 2 br(L) ≥ b(L), but this bound is not sharp, that is
∀ n ∈ N, ∃ a link L such that 2 br(L) ≥ b(L) + n.
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Definition 53. For braids, we have the Markov moves:

MI : We may replace σ · τ by τ · σ.

MII : If σ ∈ Bn, we may stabilize σ, by adding a new strand under σ and giving
it a single positive or negative crossing with the lowest strand of σ. This
crossing is added as the right-most crossing.

MII in reverse is called destabilization.

Proposition 54. If σ and τ differ by a Markov move then Lσ w Lτ .

Theorem 55 (Markov). Suppose that σ ∈ Bn and τ ∈ Bn. Then Lσ w Lτ iff
there is a sequence of Markov moves between σ and τ .

We will prove Alexander’s theorem using Seifert circles and smoothing.

Definition 54. Suppose D is an oriented diagram and c ∈ D is a crossing. We
change D to Dc by removing the crossing as below:

Example 40. Smoothing a crossing in the standard diagram of the right trefoil
gives the right Hopf link. Smoothing another crossing gives the unknot with a
twist, which can be smoothed to give the unlink.

Definition 55. If D is an oriented diagram, smoothing all crossings gives the
Seifert circles of D.

Remark. Clearly if Dc is a smoothing of D then D and Dc have the same Seifert
circles.

Note. If D and D′ differ by an R1–move then D′ has one more Seifert circle
than D.

Definition 56. Circles C1 6= C2 disagree if there is an arc α between C1 and C2

such that α ∩ (C1 ∪C2) = ∂α and the orientations of C1 and C2 disagree along
α. Furthermore, α is an arc of conflict if, in addition to the above, α∩D = ∂α.

Definition 57. Let d(D) be the number of disagreements of the Seifert circles
of D.

Consider the following algorithm. While d(D) > 0, find a conflict α and resolve
the conflict. We can do this by performing an R2–move along the arc of conflict.
We now prove that this algorithm works.
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Lemma 56. Suppose that d(D), the number of disagreements, is zero. Then D
is isotopic to a braid closure Lσ.

Proof. Let C be the disjoint union of the Seifert circles. Let R be a region of
R2 \ C. R meets either one, two or at least three of the circles. If R meets Ci,
Cj and Ck then two of these circles must disagree, giving a contradiction. It
follows that every region meets at most two of the Seifert circles. So we have
at most two sets of nested Seifert circles. By unsmoothing it is clear that D is
isotopic to a braid closure.

Lemma 57. If d(D) > 0 then there is a conflict.

Proof. We use induction on c(D), the number of crossings of D. Note that
if Dc is D smoothed at c, then d(Dc) = d(D). Suppose c(D) = 0. Since
there is a disagreement, by the combinatorial intermediate value theorem there
is a conflict between two arcs of the diagram somewhere between the arcs of
disagreement. Suppose that c(D) = n and the lemma holds for Dc where c is
some crossing. d(D) = d(Dc) > 0, so Dc has a disagreement. Hence Dc has an
arc of conflict, α. Let β be an arc between the two strands where c was removed.
If α∩β = ∅ then we are done, as α is an arc of conflict for D. If α∩β 6= ∅, we
may assume that |α ∩ β| = 1. Let β be between arcs ci and cj , and α between
ck and cl. Note that if ci 6= cl then α′ is an arc of conflict for D, where α′ is
formed by travelling along α from cl until reaching β, and then travelling along
β to ci. if ci 6= ck then α′′ is an arc of conflict for D, where α′′ is formed by
travelling along α from ck until reaching β, and then travelling along β to ci. If
ci = cl and ci = ck then α was not an arc of conflict for Dc.

Lemma 58. If α is an arc of conflict for D, then resolving α with an R2–move
reduces d(D) by exactly one.

Proof. Let α be an arc of conflict between circles C1 and C2, and let Ci be
another circle. Resolving and smoothing gives circles C ′

1 and C ′
2, with C ′

2 inside
C ′

1 and orientations agreeing. Note that Ci disagrees with C ′
1 iff it disagrees

with C1, and similarly for C2.

We can now prove correctness of the algorithm to give Alexander’s theorem.

Proof. If d(D) > 0 then ∃ an arc of conflict. Resolving this conflict decreases
d(D) by exactly one. If d(D) = 0 then D is a braid closure.
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Chapter 9

The Kauffman Bracket
Polynomial

Definition 58. Suppose D is an unoriented diagram and c ∈ D is a crossing.
Then we may smooth left or right as follows:

where DR is the right smoothing and DL is the left smoothing. We define a
bracket such that:

〈D〉 = A 〈DR〉+ B 〈DL〉
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for variables A and B. We allow A and B to commute, and make the bracket
insensitive to R0–moves. We have axioms:

(i) 〈D〉 = A 〈DR〉+B 〈DL〉, where DR is D with a crossing c right-smoothed,
and DL is D with c left-smoothed. This is called the Skein relation.

(ii) 〈D〉 = 1 if D has no crossings.

(iii) 〈U
∐

D〉 = CD where U has no crossings and C is a variable.∗

Example 41.

(i) The bracket of the standard diagram of the Hopf link is:

A2C + 2AB + B2C

(ii) The bracket of the standard diagram of the trefoil is:

A3C + 3A2B + 3AB2C + B3C2

9.1 Kauffman States

Kauffman states provide a method for organizing the bracket computations.
Label all crossings as below:

If there are c(D) crossings then there are 2c(D) possible complete smoothings.
On each crossing we can consider the A (right) or B (left) smoothing. Each of
these is a Kauffman state. We find that:

〈D〉 =
∑
s∈S

AaBbCc−1

where a is the number of A smoothings in s, b is the number of B smoothings
in s, c is the number of circles, and S is the set of Kauffman states.

Proposition 59.

(i) 〈D
∐

E〉 = 〈D〉 〈E〉C
∗Here U

∐
D denotes U ∪D with U ∩D = ∅, so that U

∐
D is still the diagram of a link.
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(ii) 〈D]E〉 = 〈D〉 〈E〉

Definition 59. We say that D,D′ are regularly isotopic if they differ by R0,
R2 and R3–moves only.

Proposition 60. The bracket is an invariant of regular isotopy if A = B−1

and C = −(A2 + A−2).

Proof. The required identities can be shown by algebra on the bracket.

Remark. The bracket is not invariant under R1–moves.

Remark. The bracket becomes a knot invariant if we set −A3 = 1, that is
A = 6

√
1 ∈ C, but then 〈D〉 = 1 ∀D.

Proposition 61. The writhe w(D) is a regular isotopy invariant.

Definition 60. The Kauffman polynomial is given by:

XK(A) = (−A−3)w(D) 〈D〉

where K is a knot or link, and D is any diagram of K.

Theorem 62. XK is an isotopy invariant.

Proof. It suffices to check invariance under R1–moves as w(D) and 〈D〉 are
regular isotopy invariants. Let D′ be a link K containing a right-handed twist (a
right crossing that can be removed by and R1–move), and let D be the diagram
after the R1–move. We denote by XD the Kauffman polynomial calculated with
diagram D.

XD′(A) = (−A−3)w(D′) 〈D′〉
= (−A−3)w(D)+1(−A3) 〈D〉
= (−A−3)w(D) 〈D〉
= XD(A)

The result is similar for a left-handed twist.

Proposition 63.

(i) 〈m(D)〉 = 〈D〉|A=A−1
.

(ii) Xm(D)(A) = XD(A−1).

(iii) Xr(D)(A) = XD(A).

Sketch Proof.

(i) Mirroring switches left and right crossings, so switches A and B = A−1.

(ii) w(m(D)) = −w(D).
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(iii) Reversing orientations leaves left/right crossings, and hence writhe, un-
changed.

Example 42. If D has no crossings then 〈D〉 = 1, w(D) = 0, so XU (A) =
(−A−3)01 = 1. If K is the right Hopf link, then:

XK(A) = (−A−3)2(−A4 −A−4)

= −A−2 −A−10

If K is the right trefoil, then:

XK(A) = (−A−3)(−A5 −A−3 + A−7)

= A−4 + A−12 −A−16

Theorem 64 (Dehn). The right trefoil RT is not isotopic to the left trefoil LT .

Proof. We find:

XRT = A−4 + A−12 −A−16

XLT = A4 + A12 −A16

so the knots have different Kauffman polynomials.

Definition 61. Define the Jones polynomial:

VK(t) = XK

(
t−

1
4

)
Example 43. VRT (t) = −t4 + t3 + t.

It remains an open question as to whether VK = 1 iff K w U . This is true up
to 17 crossings.

Proposition 65.

(i) VU = 1.

(ii) Let D+ be a diagram with a right crossing. Let D− be the same diagram
with the right crossing replaced by a left crossing, and let D0 be D+ after
the right crossing has been left smoothed. Then:

1
t
〈D+〉 − t 〈D−〉 = (t

1
2 − t−

1
2 ) 〈D0〉

Proof of (ii). This can be shown with simple algebra on the bracket. Let D′ be
the D+ with the right crossing right smoothed. Then:

〈D−〉 = A 〈D′〉+ A−1 〈D0〉
〈D+〉 = A 〈D0〉+ A−1 〈D′〉
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So then:
A 〈D+〉 −A−1 〈D−〉 = (A2 −A−2) 〈D0〉

Recall that XK(A) = (−A−3)w(D) 〈D〉 where D is any diagram of K. Equiva-
lently:

〈D〉 = −A3w(D)XK(A)

IF n = w(D0) then n + 1 = w(D+) and n− 1 = w(D−). So:

A(−A3)n+1XD+(A)−A−1(−A3)n−1XD−(A) = (A2 −A−2)(−A3)nXD0(A)

= −A4XD+ + A−4XD−

= (A2 −A−2)XD0

So then:
1
t
VD+ − tVD− = (t

1
2 − t−

1
2 )VD0

Proposition 66. If K, L are oriented links, then:

(i) VK]L = VKVL.

(ii) VK
∐

L = CVKVL = (−t
1
2 − t−

1
2 )VKVL.

Example 44. Let K be a non-splittable link with one component a trefoil and
the other an unknot, and let L be the right trefoil, oriented in the same direction
of the trefoil component of K. We may make two connect sums K]L depending
on whether we join L to the trefoil component or the unknot component of K.
By the proposition, they have the same Jones polynomial, but they are clearly
not isotopic.

Theorem 67. ∃ prime knots K and L such that VK = VL but K w L.

Theorem 68 (Thistlethwaite). ∃ a link L such that L 6w U but VL = 1.

Example 45. Take the standard diagram of the right trefoil, D+. Reverse one
crossing (D−) and left smooth it (D0). Note that D− w U and D0 w H, the
Hopf link.

1
t
VD+ − tVD− = (t

1
2 − t−

1
2 )VD0

VD+ = t(tVD− + (t
1
2 − t−

1
2 )VD0)

= t2 + (t
3
2 − t

1
2 )VH

Let H+ be the standard diagram of H. Reverse one crossing (H−, the unlink)
and left smooth (H0 w U). So:

VH− = −t
1
2 − t−

1
2

VH0 = 1
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Hence:

VH+ = −t
5
2 − t

3
2 + t

3
2 − t−

1
2

= −t
5
2 − t

1
2

Hence:

VT = VD+ = t2 − (t
3
2 − t

1
2 )(t

5
2 + t

1
2 )

= t2 − t(t− 1)(t2 + 1)

= t2 − t4 − t2 + t3 + t

= −t4 + t3 + t

Proposition 69. Any diagram can be converted to a diagram of the unknot via
crossing changes.

We may now give an algorithm to compute VD. Suppose D requires m crossing
changes:

D = Dm, Dm−1, ..., D1, D0 w U

As before, we may write:

VDK
= t2VDk−1 + t(t

1
2 − t−

1
2 )VD0

k

assuming the crossing was positive. Now apply this recursively. This algorithm
does not complete in polynomial time with respect to the number of crossings.
It is an open problem to find such an algorithm. Now recall that a diagram
is alternating if every arc crosses over exactly one crossing. If D is alternating
then the A,B labelling of crossings gives a two-colouring of the regions of D, as
every region contains only A labels or only B labels.

Definition 62. Suppose that D is alternating. Write n = c(D), the crossing
number, X for the number of A regions and Y for the number of B regions.
Finally, let w be the writhe.

Proposition 70. Suppose that D is alternating and reduced. Then the top
(highest power) term of 〈D〉 is given by AnCY−1 and the bottom (lowest power)
term of 〈D〉 is given by A−nCX−1. Substituting for C, we find the highest term
is (−1)Y−1An+2Y−2 and the lowest term is (−1)X−1A−n−2X+2.

Proof. Perform only A smoothings, and then the B regions either side of each
crossing are distinct, because the diagram is reduced. So we get Y loops, and
hence making all A smoothings gives AnCY−1. Similarly making all B smooth-
ings gives A−nCX−1. We claim that any other smoothing has a power of A
strictly between n+2Y −2 and −n−2X +2, so is neither highest or lowest. To
show this, suppose that s is a state other than the state with all A smoothings.
Say s has b ≥ 1 B smoothings. We need to show that AaBbCc−1 has a lower
degree than An+2Y−2. We do this by induction on b. In the base case b = 1,
An−1BCY−2 is the term given. That is, switching any one smoothing in the
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all A state to a B smoothing reduces the number of loops by exactly one. In
general, if b ≥ 2, we may change a previous state An−b+1Bb−1CR to at most
An−bBbCR+1, so the total degree in A cannot go up. We obtain the bound for
the lowest term similarly.

Proposition 71. If D is alternating and connected then X + Y = n + 2.

Proof. We use the Euler number of D. Let V = n, the number of vertices,
E = 2n, the number of edges, and F = X + Y , the number of faces. As the
Euler number of a sphere is 2, n− 2n + X + Y = 2, so X + Y = n + 2.

Definition 63. If p(t) ∈ Z[t, t−1], define span(p) to be the highest degree minus
the lowest degree.

Example 46.

(i) span(tn) = 0.

(ii) span(tn + 1) = n if n ≥ 1.

(iii) span(tn + t−n) = 2n if n ≥ 0.

Theorem 72. If D is alternating, reduced and connected, then span(〈D〉) = 4n.

Proof. We have:

span(〈D〉) = n + 2Y − 2− (−n− 2X + 2)
= 2n + 2X + 2Y − 4
= 2n + 2(X + Y )− 4
= 2n + 2(n + 2)− 4
= 4n

Corollary 73. If D is alternating, reduced and connected, then span(VD) = n.
So the Jones polynomial detects the crossing number of knots with an alternating
presentation.
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Chapter 10

Tangles

Definition 64. A tangle is a link with two arcs and n loops inside of a ball with
endpoints at the north-east, south-east, south-west and north-west corners.

Definition 65. We say tangles S, T are equivalent, or isotopic, if there is an
isotopy of the ball, fixed on the boundary, sending S to T .

Definition 66. We define the following canonical tangles:

(i) The 0 tangle has arcs joining north-west to north-east, and south-west to
south-east, without crossings.

(ii) The ∞ tangle joins north-west to south-west and north-east to south-east
without crossings.

(iii) The 1 tangle has arcs joining opposite corners with the north-east to south-
west arc passing over in a single crossing.

(iv) The −1 tangle has arcs joining opposite corners with north-east to south-
west arc passing under in a single crossing.

Remark. The above tangles are pairwise inequivalent.

Definition 67. The closure (or numerator) of T , denoted N(T ), is the link
obtained by connecting the north pair and the south pair, outside the ball.

Definition 68. If S, T are tangles then S + T is the tangle formed by joining
the north-east endpoint of S to the north-west endpoint of T , and similarly for
the south endpoints.

Remark. Addition of tangles is not commutative, but it is associative. We have
N(S + T ) w N(T + S). 0 is the additive identity.

Definition 69. Write n = 1 + · · ·+ 1 for the −n twist box. Similarly we may
write −n for the sum of n −1 tangles.
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Definition 70. The reciprocal of of a tangle F is the reflection through the
north-west to south-east line, and is denoted by 1

F .

Definition 71. The dot of tangles S · T is the tangle 1
S + T .

Example 47. N(3 · 2) is the 52–knot.

Definition 72. a1a2a3 · · · an is the tangle:

(· · · (((a1 · a2) · a3) · a3) · · · · · an)

These are Conway’s rational tangles.

Example 48. N((a1 · a2) · a3) gives a 4–plat.

Proposition 74. We have:

N(a1a2 · · · an) w

{
N(anan−1 · · · a1), n odd
N((−an)(−an−1) · · · (−a1)), n even

Recall that rational numbers may be expressed as continued fractions.

Example 49.

(i) As a continued fraction:

23
10

= 2 +
3
10

= 2 +
1
10
3

= 2 +
1

3 + 1
3

= [3, 3, 2]

(ii) As a continued fraction:

17
10

= 1 +
7
10

= 1 +
1
10
7

= 1 +
1

1 + 3
7

= 1 +
1

1 + 1
3
7

= 1 +
1

1 + 1
2+ 1

3

= [3, 2, 1, 1]
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(iii) As a continued fraction:

17
12

= 1 +
5
12

= 1 +
1
12
5

= 1 +
1

2 + 2
5

= 1 +
1

2 + 1
5
2

= 1 +
1

2 + 1
2+ 1

2

= [2, 2, 2, 1]

Theorem 75 (Conway). The map a1a2a3 · · · an 7→ [a1, a2, ..., an] from rational
tangles to Q ∪ {∞} is a bijection.

Remark. Neither rational tangles nor rational numbers have unique expressions
as above. For example:

2 = 1 +
1
1

So by the theorem:
[2] = [1 1]

Example 50. The rational tangles T 17
10

and T 17
12

are not isotopic, but:

N(T 17
10

) w N(T 17
12

)

By T 17
10

we mean the rational tangle corresponding to 17
10 ∈ Q by Conway’s

bijection.

Corollary 76. Any rational tangle a1a2 · · · an is isotopic to a tangle that is
either 0, ±1, ∞ or such that all the ai have the same sign, and |ai| ≥ 2. Here
we may have an = 0.

The proof of this corollary uses Lagrange’s formula:

a +
1
−b

= (a− 1) +
1

1 + 1
b−1
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To see this:

(a− 1) +
1

1 + 1
b−1

= a +
1

1 + 1
b−1

−
1 + 1

b−1

1 + 1
b−1

= a +
− 1

b−1

1 + 1
b−1

= a +
−1

b− 1 + 1

= a +
1
−b

By the bijection, this means that we can find an isotopy [−b, a] 7→ [b−1, 1, a−1].
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Chapter 11

Surfaces

We can classify up to homeomorphism surfaces which are compact, orientable
and without boundary by using the genus, thought of as the number of “han-
dles”. Denote by Sg the compact orientable surface without boundary of genus
g. To obtain surfaes with boundary, we cut n disks out of Sg.

Definition 73. Sg,n is the orientable, compact, connected surface with genus
g and n boundary components.

11.1 The Euler Characteristic

If S is a surface decomposed into 2–cells, then the Euler characteristic is:

χ(S) = V − E + F

where V is the number of 0–cells (or vertices), E is the number of 1–cells (or
edges), and F is the number of 2–cells (or faces).

Theorem 77. χ(S) = 2− 2g − n.

Definition 74. At every point x in a surface S there is a notion of right or
left handedness. We say S is orientable if there is a consistent choice of right
handedness in S.

Example 51. The annulus is orientable, but the Möbius band is not.

Definition 75. A surface S ⊆ R3 is a spanning surface for K ⊆ R3 if:

(i) S ∩K = ∂S = K.

(ii) S is orientable, compact and connected.

Example 52. U is spanned by a round disk. U is also spanned by surfaces of
higher genus.
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Theorem 78 (Classification). All compact connected surfaces are determined
(up to homeomorphism) by their:

(i) Orientability.

(ii) Number of boundary components.

(iii) Euler characteristic.

Remark. Not all surfaces can be embedded in R3. For example, M0∪∂M1, where
M0 and M1 are Möbius bands, is the Klein bottle, which cannot be embedded
in R3. However, all orientable surfaces can be embedded in R3.

Proposition 79. Every oriented knot has a spanning surface.

Proof. Let D be a diagram of K. Let {Ci} be the set of Seifert circles of D.
Attach a disk to each circle. These disks are nested as the circles are. Now
unsmooth and attach half-twisted bands at each crossing. We claim that this
canonical surface is orientable by the Seifert circles.

Note. Different diagrams may lead to different spanning surfaces.

Proposition 80. If K is a knot with diagram D, the canonical surface for D
has one boundary component, is orientable and has genus g = 1

2 (c − s + 1),
where c is the number of crossings and s is the number of Seifert circles.

Proof. V −E +F = χ(S) = 2−2g−1. The number of faces is s+c, the number
of edges is 6c and the number of vertices is 4c. So:

V − E + F = 4c− 6c + s + c

= s− c

= 1− 2g

So c− s = 2g − 1, and hence:

(c− s + 1)
2

= g

Definition 76. The Seifert genus of K is given by:

g(K) = min{g(S)|S spans K}

Corollary 81. If D is a diagram of K then g(K) ≤ 1
2 (c− s + 1).

Proposition 82. g(K) = 0 iff K w U .

Proof. By the above corollary, g(U) ≤ 1
2 (0 − 1 + 1) = 0, so g(U) = 0. If K

is spanned by a disk, then the disk gives an isotopy of K to a small round
circle.

Example 53. The trefoil, figure eight, 61 and 946 knots all have genus 1.

63



Theorem 83. Suppose K, L are knots. Then g(K]L) = g(K) + g(L).

Proof. We first show that g(K]L) ≤ g(K) + g(L). It suffices to find a spanning
surface S for K]L with genus at most g(K) + g(L). Pick spanning surfaces SK

and SL for K and L such that SK and SL have minimal genus. Connect SK

and SL along a band attached to ∂SK and ∂SL to get a spanning surface for
K]L with genus g(K) + g(L). Now we show that g(K]L) ≥ g(K) + g(L). Fix a
minimal spanning surface S for K]L. Let P be a large 2–sphere that splits K
from L. Consider the intersection of S with P . Note that (K]L) ∩ P is exactly
two points. By moving S slightly we find that S ∩ P is a collection of arcs and
circles. Since only two endpoints are available, there is exactly one arc and a
collection of circles. We say one such circle c is innermost if one component D
of S \c meets S only along c. By the Jordan curve theorem, if S∩P has a circle,
then there is an innermost circle. If there are no circles in S ∩ P then S ∩ P is
just an arc, which we may use to cut S. Cutting S along the arc gives spanning
surfaces S′

K and S′
L of K and L respectively. If circles of S∩P exist, then there

is an innermost circle c, which is spanned by a disk D, that is ∂D = c and
D ∩ S = c. We may cut S along c and glue in two copies of D (a process called
compression). If c separates S then after compression we ignore the component
not meeting the knot. So after compression we find a new spanning surface S′

that meets P in fewer circles.

Corollary 84. If K]L w U then both K and L are isotopic to U .

Proof. If K]L w U then g(K]L) = 0, so g(K) = g(L) = 0. Hence K w L w
U .

Definition 77. Let T2 be the 2–torus in R2 in standard position. If a knot K
is embedded in T2, then call K a torus knot.

Definition 78. We label a simple loop through the hole of the torus by 1
0 and

a simple loop around the hole by 0
1 , in reference to the vertical and horizontal

slope. We can define more curves in this way; for example 3
1 moves vertically

three times as fast as horizontally, so it meets 1
0 once, and 0

1 three times. The
general m

n curve meets 1
0 n times and 0

1 m times.

Proposition 85.

(i) The (1, n) and (n, 1) torus knots are isotopic to U .

(ii) The figure eight is not a torus knot.

(iii) The (p, q) torus knot is isotopic to the (q, p) torus knot.

(iv) If gcd{p, q} = n then the (p, q) torus link has n components.

Note. The (p, q) torus knot is the curve of slope p
q on T2.

Definition 79. Let D be an oriented link diagram. Define the Conway poly-
nomial ∇D to satisfy:
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(i) ∇U = 1.

(ii) ∇D+−∇D− = z∇D0 , where D+ has a right crossing, D− has this crossing
replaced by a left crossing and D0 has this crossing smoothed.

Theorem 86. ∇K (calculated for any diagram of K) is an isotopy invariant
of links.

Remark. Just as with VK there is an algorithm to compute ∇K . We use a
double recursion on the number of crossing changes required to get U and on
the number of crossings.

Example 54. Let H be the Hopf link, S the split link, and U the unknot.
Then:

∇H −∇S = z∇U = z

So we may calculate ∇H from ∇S .

Proposition 87. Let S be the split link. Then ∇S = 0.

Proof. Consider D:

This is isotopic to both D+:

and D−:

Smooth to find D0:
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So:
∇D+ −∇D− = z∇D0

Since D+ w D− w D (meaning the knots represented are isotopic), we find
z∇D0 = 0, so ∇D0 = 0.

Example 55. Using this information in the previous example, we find ∇H = z.

Example 56. Let T be the right trefoil. Then:

∇T −∇U = z∇H

∇T = z2 + 1

Proposition 88.

(i) ∇r(D)(z) = ∇D(z).

(ii) ∇m(D)(−z) = ∇m(D)(z).

(iii) If K is a knot, then ∇K is a polynomial in z2.

Proof of (ii). Fix D+ with positive crossing. D− has a negative crossing. So
m(D+) has a negative crossing and m(D−) has a positive crossing.

∇m(D−)(z)−∇m(D+)(z) = z∇m(D0)(z)

Substitute z = −w.

∇m(D−)(−w)−∇m(D+)(−w) = −w∇m(D0)(−w)

∇m(D+)(−w)−∇m(D−)(−w) = w∇m(D0)(−w)

Compare to:
∇D+(z)−∇D−(z) = z∇D0(z)

By double induction:

∇D−(z) = ∇m(D−)(−z)

∇D0(z) = ∇m(D0)(−z)

So ∇m(D+)(−z) = ∇D+(z) as desired.
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Proposition 89.

(i) If K is a knot, ∇K(0) = 1.

(ii) If K is a link of two components then the linear term of ∇K is the linking
number.

Proof of (ii). Let K be represented by D+. Let c be a positive crossing between
distinct components. This crossing adds 1

2 to the linking number in D+, − 1
2 to

the linking number of D−, and D0 is a knot. So:

∇D+ −∇D− = z∇D0

= z(1 + a2z
2 + a4z

4 + · · · )

by (i) and the previous proposition. So the linear terms of ∇D+ and ∇D− differ
by 1. So ∇D+ is one more than the linear term of ∇D− , which is the linking
number of D− by induction.

Theorem 90. If L is a link, than ∇L(x− x−1) = ∆L(x2).

Corollary 91. ∇L(2i) = ±det(L).

Proof. i− 1
i = 2i, so ∇L(2i) = ∆L(−1) = ±det(L).

Definition 80. The HOMFLY (Hoste, Ocheau, Millet, Freyd, Lickorish, Yet-
ter) polynomial PK satisfies:

(i) PU = 1.

(ii) αPD+ − α−1PD− = zPD0 where D+ has a positive crossing, D− replaces
this by a negative crossing, and D0 has this crossing smoothed.

Remark. PK is a polynomial in z and a Laurant polynomial in α. At α = 1 we
find PK(1, z) = ∇K(z). At α = t−1, z = t

1
2 − t−

1
2 we find PK(t−1, t

1
2 − t−

1
2 ) =

VK(t).

Theorem 92. PK is an isotopy invariant.

Example 57. Consider the Kinoshita-Terasaka knot:
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and the Conway knot:

These two knots are not isotopic, but they have the same HOMFLY polynomial,
and both have Conway polynomial 1.
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