MA4J2 Exercise sheet 4.

Please let me know if any of the problems are unclear or have typos.

Exercise 4.1. Show that there are exactly two inequivalent \mathbb{B}^k -bundles over S^1 . The same holds for S^1 - and S^2 -bundles over S^1 .

- **Exercise 4.2.** Prove that M^n is orientable if and only if for every simple closed curve $\alpha \subset M$ the regular neighborhood $N(\alpha)$ is a trivial bundle.
- **Exercise 4.3.** Classify, up to bundle equivalence, two-fold covers of \mathbb{T}^2 . Do the same for S_2 , the closed orientable surface of genus two. Which of these can you give pictures for?
- **Exercise 4.4.** Suppose that $\rho: T \to F^2$ is an \mathbb{B}^1 -bundle. Show that the vertical boundary $\partial_v T$, the horizontal boundary $\partial_h T$, and the zero-section are all incompressible in T. (Here we exclude the case of the product I-bundle over D^2 .) On the other hand: show that if F has boundary and T is orientable, then T is a handlebody. Thus ∂T is often compressible.
- **Exercise 4.5.** Suppose that M is an irreducible three-manifold and $F, G \subset \partial M$ are disjoint, incompressible subsurfaces. Suppose that $\phi \colon F \to G$ is a homeomorphism. Suppose that $H \subset M$ is a properly embedded incompressible surface and disjoint from F and G. Show that the image of H is M/ϕ is incompressible. Deduce that if that $\rho \colon T \to S^1$ is an F^2 -bundle then all fibers (point preimages) are incompressible.
- **Exercise 4.6.** [Easy] Suppose that $V = V_2$ is a handlebody of genus two. Prove or find a counterexample: any surface properly embedded in V is compressible or is ambient isotopic into a regular neighborhood of ∂V .
- **Exercise 4.7.** [Medium] Suppose that T is a finite triangulation. Give necessary and sufficient combinatorial conditions so that ||T|| is homeomorphic to a topological manifold M^n , for $n \leq 3$.
- Suppose that (F,T) is a triangulated surface. Call a simple closed curve $\alpha \subset F$ normal if α is transverse to the skeleta of T and $\alpha \cap \Delta$ is a finite collection of normal arcs, for every triangle $\Delta^2 \subset F$. The weight of α is $w(\alpha) = |\alpha \cap T^{(1)}|$.
- **Exercise 4.8.** Suppose that (F,T) is the boundary of a three-simplex. Show that if α is a normal curve and if α meets every edge of $T^{(1)}$ at most once then α has weight three or four. Deduce that there are seven normal disks in a tetrahedron.
- **Exercise 4.9.** In the proof of Haken-Kneser finiteness we defined N to be the closure of the union, over all $\Delta \in T^{(3)}$, of all components of ΔS meeting F. Prove that N is an I-bundle and either N is ambient isotopic to N(F) or F is two-sided and parallel to $\partial_h N$.

2011/01/31