MA4J2: Three Manifolds

Lectured by Dr Saul Schleimer Typeset by Matthew Pressland Assisted by Anna Lena Winstel and David Kitson

Lecture 1

One goal of topology is to classify manifolds up to homeomorphism. In dimension $n \geq 4$, this problem is undecidable; no algorithm, given two manifolds as an input, can decide whether or not they are homeomorphic.* We will classify manifolds in dimensions 0, 1 and 2 in the next few pages. The general topic is to classify 3-manifolds.

Definition 1.1. An n-manifold M^n is a Hausdorff topological space with a countable basis and such that every point $p \in M$ has an open neighbourhood U which is homeomorphic to either \mathbb{R}^n or $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x_n \geq 0\}$.

Remark. \mathbb{R}^n_+ is called the upper half space, and $\mathbb{R}^n_- = \{x \in \mathbb{R}^n : x_n \leq 0\}$ is called the lower half space.

Definition 1.2. ∂M is the set of points p in M such that no neighbourhood of p is homeomorphic to \mathbb{R}^n .

Proposition 1.1. ∂M is an (n-1)-manifold, and $\partial \partial M = \emptyset$.

Definition 1.3. $int(M) = M - \partial M$.

Definition 1.4. We use $I = [0,1] \subseteq \mathbb{R}$, $\mathbb{B}^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, and $\mathbb{D}^2 = \mathbb{B}^2$.

Definition 1.5. We give several equivalent definitions of the *sphere*:

- (i) A submanifold definition: $S^n = \partial \mathbb{B}^{n+1} = \{x \in \mathbb{R}^{n+1} : |x| = 1\}.$
- (ii) A one-point compactification definition: S^n is the one-point compactification of \mathbb{R}^n , that is $S^n = \mathbb{R}^n \cup \{\infty\}$ topologized such that for any compact $K \subseteq \mathbb{R}^n$, the set $(\mathbb{R}^n K) \cup \{\infty\}$ is a neighbourhood of ∞ . Note here that \mathbb{B}^n is the one-point compactification of \mathbb{R}^n_+ .
- (iii) A gluing definition: $S^n = \mathbb{B}_0^n \sqcup \mathbb{B}_1^n / \sim$ where $(x,0) \sim (x,1)$ if and only if $x \in \partial \mathbb{B}^n$. For example, S^1 can be obtained by joining two copies of \mathbb{B}^1 by their boundaries, and similarly for S^2 and \mathbb{B}^2 .

^{*}This result is due to A.A. Markov (1958).

Definition 1.6. We now give several equivalent definitions of *projective spaces*:

- (i) A covering space definition: $\mathbb{P}^n = S^n / \sim$ where $x \sim -x$, taking S^n as in definition (i) above.
- (ii) A gluing definiton: $\mathbb{P}^n = \mathbb{B}^n / \sim$ where $x \sim -x$ if and only if $x \in \partial \mathbb{B}^n$.
- (iii) A moduli space definition:

$$\mathbb{P}^n = \{ L \subseteq \mathbb{R}^{n+1} : L \text{ is a line through the origin} \} = (\mathbb{R}^{n+1} - \{0\}) / \sim$$
 where $x \sim \lambda x$ for $\lambda \in \mathbb{R} - \{0\}$.

Definition 1.7. We have three equivalent definitions of *tori*:

- (i) A Cartesian product definition: $\mathbb{T}^n = (S^1)^n$, taking the Cartesian product.
- (ii) A covering space definition: $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n = \mathbb{R}^n/\sim$ with $x \sim y$ if and only if $x-y \in \mathbb{Z}^n$.
- (iii) A gluing definition: $\mathbb{T}^n = I^n / \sim$ where $(x,0,y) \sim (x,1,y)$ if and only if $x \in I^k$ and $y \in I^{n-k-1}$ for any $k \in \{0,...,n-1\}$.

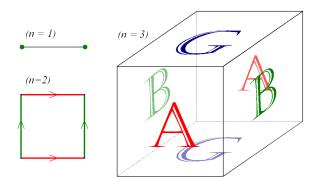


Figure 1: Construction of the first three n-tori \mathbb{T}^n . Identify opposite faces of I^n without twisting.

Note. $\mathbb{T}^1 \cong S^1$.

Exercise 1.1. For each set of three definitions above, prove that all three are equivalent.

In dimension zero, any compact manifold is a finite collection of points, so the classification is given by the number of points. All compact connected one-dimensional manifolds are homeomorphic to either S^1 or I.

[†]We will sometimes use \mathbb{R}^* for $\mathbb{R} - \{0\}$.

Definition 1.8. Suppose M_i (for i=0,1) are orientable n-manifolds. Choose $\mathbb{B}^n_i \subseteq M_i$ and suppose $\varphi: \partial \mathbb{B}^n_0 \to \partial \mathbb{B}^n_1$ is an orientation reversing homeomorphism. Define:

$$M_0 \# M_1 := ((M_0 - \operatorname{int}(B_0^n)) \sqcup (M_1 - \operatorname{int}(B_1^n))) / \sim$$

where $x \sim \varphi(x)$ whenever $x \in \partial \mathbb{B}_0^n$.

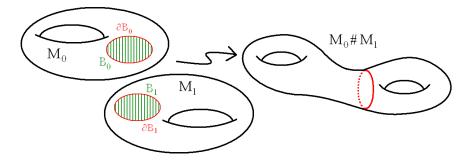


Figure 2: The connect sum. Remove the interiors of the disks \mathbb{B}_i and glue along their boundaries.

Exercise 1.2. Show that $\#_3\mathbb{P}^2 \cong \mathbb{T} \# \mathbb{P}^2$.

Theorem 1.2. Every compact connected two-dimensional manifold is homeomorphic to some $S_{g,n,c}$, where:

$$S_{q,n,c} := (\#_q \mathbb{T}^2) \# (\#_n \mathbb{D}^2) \# (\#_c \mathbb{P}^2)$$

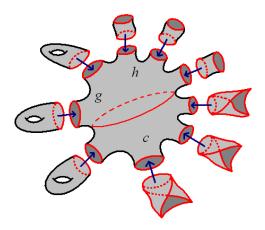


Figure 3: $S_{3,3,3}$ is the connect sum of the sphere with three tori, three Möbius strips and three 2-disks, glued along the boundary components (in red)

Example 1.1. Some spaces $S_{g,n,c}$ are homeomorphic, for example $S_{3,3,3}\cong S_{4,3,1}$.

Lecture 2

Example 2.2. We give some connect sums of three manifolds:

$$S^3 \# S^3 \cong S^3$$
$$\mathbb{T}^3 \# S^3 \cong \mathbb{T}^3$$

In general, S^n is a unit for the connect sum. $\mathbb{P}^3 \# \mathbb{P}^3$ is more interesting, as we will discuss later. On the other hand, $\mathbb{T}^3 \# \mathbb{T}^3$ invites splitting into two copies of \mathbb{T}^3 for a more interesting and fundamental geometry. In general, we shall find a decomposition theorem for 3–manifolds with respect to #.

Definition 2.9. M^3 is *prime* if whenever M = N # L then either N or L is homeomorphic to S^3 .

Remark. If M = N # L and $N \cong S^3$ then $L \cong M$, and vice versa.

Definition 2.10. M is *irreducible* if every smoothly embedded S^2 in M bounds a 3-ball.

Note. We have no examples yet of prime or irreducible 3-manifolds.

Definition 2.11. Suppose $X,Y\subseteq Z$. We say X is ambient isotopic (diffeotopic) to Y if there exists a continuous (smooth) map $F:Z\times I\to Z$ such that, defining $F_t(z):=F(t,z)$:

- (i) For all $t \in I$, F_t is a homeomorphism (diffeomorphism).
- (ii) $F_0 = \operatorname{Id}_Z$.
- (iii) $F_1|X:X\to Y$ is a homeomorphism (diffeomorphism).

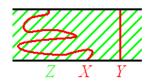


Figure 4: Here, X is ambient isotopic to Y in Z.

Theorem 2.3 (Alexander). Every smoothly embedded $S^2 \subset S^3$ is ambient isotopic to the equator.

Compare this to:

Theorem 2.4 (Jordan-Schoenflies). Every smoothly embedded $S^1 \subset S^2$ is ambient isotopic to the equator.

We will prove Alexander's theorem later, but for now give the following corollary.

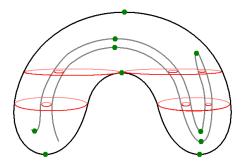


Figure 5: It is not always obvious which ball a sphere bounds

Corollary 2.5. S^3 is prime.

Proof. Suppose $S^3 = M \#_S N$. By Alexander's theorem, S is ambient isotopic to a round embedding of S^2 in S^3 (say the equator). Thus $M - \operatorname{int}(\mathbb{B}^3) \cong \mathbb{N} - \operatorname{int}(\mathbb{B}^3) \cong \mathbb{B}^3$, and hence $M \cong N \cong S^3 \cong \mathbb{B}^3 \cup_{\partial} \mathbb{B}^3$.

It is important that the embedding is smooth, as the following result shows.

Theorem 2.6. There exists a topological $S^2 \subset S^3$ which does not bound \mathbb{B}^3 on either side.

Note. This is a generalization of the Alexander horned sphere.

Remark. The statement of Alexander's theorem with $S^2 \subset S^3$ replaced by $S^3 \subset S^4$ is an open problem, although it has been proved that a smoothly embedded $S^3 \subset S^4$ bounds a topological ball. Brown has proved the more general statement that a smoothly embedded $S^{n-1} \subset S^n$ bounds a topological ball.

Remark. It is worth making explicit the various categories involved:

- (i) Topological (TOP).
- (ii) Piecewise linear (PL).
- (iii) Smooth (DIFF).

These categories are all equivalent in dimension at most 3, so we move between them freely.

Exercise 2.3.

- (i) Prove that any irreducible manifold is prime.
- (ii) Prove that M is orientable and $S \subset M$ is a non-separating 2–sphere, then $M = N \# (S^2 \times S^1)$.

- (iii) Suppose M is orientable. Then M is prime and reducible if and only if $M\cong S^2\times S^1$. Prove the forward direction.
- (iv) State and prove analogous statements to (ii) and (iii) for non-orientable manifolds.

We give one more corollary to Alexander's theorem:

Corollary 2.7. If $M \subseteq S^3$ is compact and has $|\partial M| \le 1$ (at most one boundary component) then M is irreducible.

Example 2.3. We give further examples of irreducible manifolds. Suppose $K \subset S^3$ is a knot, that is a smooth embedding of S^1 . Let $N(K) \subseteq S^3$ be a closed regular neighbourhood (i.e. a tubular neighbourhood) of the knot. Let $n(K) = \operatorname{int}(N(K))$. Then the knot exterior $X_K := S^3 - n(K)$ is irreducible, by the previous corollary.

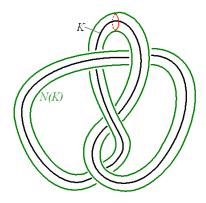


Figure 6: A tubular neighbourhood of the figure 8 knot

Lecture 3

We now prove Alexander's theorem. More precisely, we will prove that any (smoothly) embedded $S^2 \subset \mathbb{R}^3$ bounds a 3-ball, from which the theorem can be deduced as a corollary.

Exercise 3.4. Show how Alexander's theorem follows from this statement.

We need the following lemma:

Lemma 3.8. Suppose that a manifold M^n and $\mathbb{B}_1^{n-1} \subseteq \partial M^n$ are given, as is a diffeomorphism $\varphi : \mathbb{B}_0^{n-1} \to \mathbb{B}_1^{n-1}$, where $\mathbb{B}_0^{n-1} \subseteq \partial \mathbb{B}^n$. Then $M^n \cup_{\varphi} \mathbb{B}^n \cong M^n$, as per Figure 7.

As a consequence, if B and B' are n-balls, then $B \cup_{\partial} B'$ is a ball (Figure 8(a)), as is $\overline{B - B'}$ if $B' \subset B$ and $\partial B' \cap \partial B \cong \mathbb{D}^{n-1}$ (Figure 8(b)).

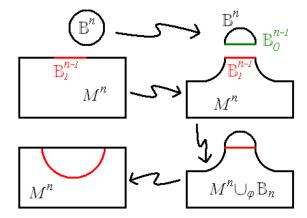


Figure 7: Glueing M^n to \mathbb{B}^n along submanifolds of their boundaries is homeomorphic to M^n .

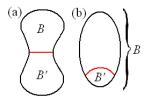


Figure 8: (a) B, B' balls $\Rightarrow B \cup_{\partial} B'$ a ball, and (b) $B' \subset B$ and $\partial B' \cap \partial B \cong \mathbb{D}^{n-1} \Rightarrow \overline{B-B'}$ a ball.

Theorem 3.9. Any smoothly embedded $S^2 \subset \mathbb{R}^3$ bounds a 3-ball.

Proof. Suppose $S^2 \cong S \subset \mathbb{R}^3$ is smooth. We can isotope S so that $z: S \to \mathbb{R}$ (the height function, giving the z co-ordinate) is a Morse function. Thus all critical points are of the standard three types; cups (minima), caps (maxima), and saddles, and all critical points occur at distinct heights (as illustrated in Figure 9). Choose $a_i \in \mathbb{R}$ such that $(-\infty, a_1), (a_1, a_2), ..., (a_{n-1}, \infty)$ each contain

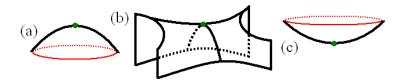


Figure 9: (a) A cap. (b) A saddle. (c) A cup.

exactly one critical value, as in Figure 10. Let:

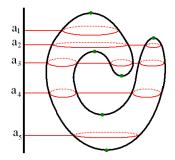


Figure 10: The red circles are regular values separating the critical points (green). Here we have (n, w) = (6, 9).

$$L[a,b] := \{(x,y,z) : z \in [a,b]\}$$

$$L(a) := \{(x,y,z) : z = a\}$$

$$L_i := L(a_i)$$

Define n(S) to be the number of critical points. Define the width by:

$$w(S) = \sum_{i=1}^{n-1} |S \cap L_i|$$

This is the number of red circles in Figure 10. We will induct on (n(S), w(S)) lexicographically. Note that the components of $L_i \cap S$ are all simple closed curves, because each a_i is a regular value. So by the Jordan-Schoenflies theorem, they all bound disks. Say that β , a component of $L_i \cap S$, is innermost if D_{β} , the disk bounded by β , has the property that $D_{\beta} \cap S = \beta$. Notice that β also bounds a pair of disks in S. Label a_i with an A (resp. B) if there is some

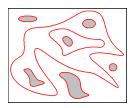


Figure 11: The intersection of the plane L_i with the sphere. Shaded components are innermost.

innermost curve $\beta \subseteq L_i \cap S$ such that one disk of $S - \beta$ contains exactly one critical point, a maximum (resp. minimum). Note that a_i could receive both labels. Note also that a_1 is labelled by B and a_{n-1} is labelled by A. We have cases:

Case 1: Some a_i is labelled both A and B.

Case 2: Some a_i is unlabelled.

Case 3: There exists i such that a_i is labelled B and a_{i+1} is labelled A.

Exercise 3.5. Check that we must always be in at least one of these cases.

We prove these in turn:

Case 1a: Some innermost $\beta \in L_i \cap S$ bounds a disk in S above and bounds a disk in S below, each with one critical point; this forms the base case of the induction, where n(S) = 2 and w(S) = 1. We claim that in this case S bounds a ball. To see this, cut off the two critical points with planes

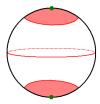


Figure 12: The base case.

slightly above the minimum and below the maximum, removing two 3-balls from S, and giving a compact cylinder. We claim that for every $a \in \mathbb{R}$ such that the set L(a) intersects this compact cylinder, there exists $\varepsilon > 0$ such that $S \cap L[a, a + \varepsilon]$ bounds a 3-ball in $L[a, a + \varepsilon]$. This can be proved by the implicit function theorem and the isotopy extension theorem. See Hatcher's *Notes on basic 3-manifold topology* for more details. Note that

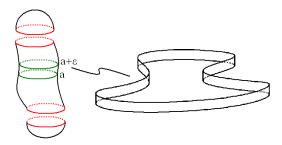


Figure 13: The slab bounded by $L[a, a + \varepsilon]$.

the intersection $L(a) \cap S$ is a curve, so bounds a disk. Note that finitely many of the $L[a, a + \varepsilon]$ cover the compact cylinder. Glue these slabs together, and re-attach the cap and cup. By Lemma 3.8, this gives a 3-ball.

This proof continues in the lectures from week two.