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Lecture 1

One goal of topology is to classify manifolds up to homeomorphism. In dimen-
sion n ≥ 4, this problem is undecidable; no algorithm, given two manifolds as
an input, can decide whether or not they are homeomorphic.∗ We will classify
manifolds in dimensions 0, 1 and 2 in the next few pages. The general topic is
to classify 3–manifolds.

Definition 1.1. An n–manifold Mn is a Hausdorff topological space with a
countable basis and such that every point p ∈ M has an open neighbourhood
U which is homeomorphic to either Rn or Rn+ = {x ∈ Rn : xn ≥ 0}.

Remark. Rn+ is called the upper half space, and Rn− = {x ∈ Rn : xn ≤ 0} is
called the lower half space.

Definition 1.2. ∂M is the set of points p in M such that no neighbourhood of
p is homeomorphic to Rn.

Proposition 1.1. ∂M is an (n− 1)–manifold, and ∂∂M = ∅.

Definition 1.3. int(M) = M − ∂M .

Definition 1.4. We use I = [0, 1] ⊆ R, Bn = {x ∈ Rn : |x| ≤ 1}, and D2 = B2.

Definition 1.5. We give several equivalent definitions of the sphere:

(i) A submanifold definition: Sn = ∂Bn+1 = {x ∈ Rn+1 : |x| = 1}.

(ii) A one-point compactification definition: Sn is the one-point compactifica-
tion of Rn, that is Sn = Rn ∪ {∞} topologized such that for any compact
K ⊆ Rn, the set (Rn − K) ∪ {∞} is a neighbourhood of ∞. Note here
that Bn is the one-point compactification of Rn+.

(iii) A gluing definition: Sn = Bn0 t Bn1/ ∼ where (x, 0) ∼ (x, 1) if and only if
x ∈ ∂Bn. For example, S1 can be obtained by joining two copies of B1 by
their boundaries, and similarly for S2 and B2.

∗This result is due to A.A. Markov (1958).
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Definition 1.6. We now give several equivalent definitions of projective spaces:

(i) A covering space definition: Pn = Sn/ ∼ where x ∼ −x, taking Sn as in
definition (i) above.

(ii) A gluing definiton: Pn = Bn/ ∼ where x ∼ −x if and only if x ∈ ∂Bn.

(iii) A moduli space definition:

Pn = {L ⊆ Rn+1 : L is a line through the origin} = (Rn+1 − {0})/ ∼

where x ∼ λx for λ ∈ R− {0}.†

Definition 1.7. We have three equivalent definitions of tori :

(i) A Cartesian product definition: Tn = (S1)n, taking the Cartesian product.

(ii) A covering space definition: Tn = Rn/Zn = Rn/ ∼ with x ∼ y if and only
if x− y ∈ Zn.

(iii) A gluing definition: Tn = In/ ∼ where (x, 0, y) ∼ (x, 1, y) if and only if
x ∈ Ik and y ∈ In−k−1 for any k ∈ {0, ..., n− 1}.

Figure 1: Construction of the first three n–tori Tn. Identify opposite faces of
In without twisting.

Note. T1 ∼= S1.

Exercise 1.1. For each set of three definitions above, prove that all three are
equivalent.

In dimension zero, any compact manifold is a finite collection of points, so the
classification is given by the number of points. All compact connected one-
dimensional manifolds are homeomorphic to either S1 or I.
†We will sometimes use R∗ for R− {0}.
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Definition 1.8. Suppose Mi (for i = 0, 1) are orientable n–manifolds. Choose
Bni ⊆ Mi and suppose ϕ : ∂Bn0 → ∂Bn1 is an orientation reversing homeomor-
phism. Define:

M0 #M1 := ((M0 − int(Bn0 )) t (M1 − int(Bn1 )))/ ∼
where x ∼ ϕ(x) whenever x ∈ ∂Bn0 .

Figure 2: The connect sum. Remove the interiors of the disks Bi and glue along
their boundaries.

Exercise 1.2. Show that #3P2 ∼= T # P2.

Theorem 1.2. Every compact connected two-dimensional manifold is homeo-
morphic to some Sg,n,c, where:

Sg,n,c := (#gT2) # (#nD2) # (#cP2)

Figure 3: S3,3,3 is the connect sum of the sphere with three tori, three Möbius
strips and three 2–disks, glued along the boundary components (in red)

Example 1.1. Some spaces Sg,n,c are homeomorphic, for example S3,3,3
∼=

S4,3,1.
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Lecture 2

Example 2.2. We give some connect sums of three manifolds:

S3 # S3 ∼= S3

T3 # S3 ∼= T3

In general, Sn is a unit for the connect sum. P3 # P3 is more interesting, as we
will discuss later. On the other hand, T3 #T3 invites splitting into two copies of
T3 for a more interesting and fundamental geometry. In general, we shall find
a decomposition theorem for 3–manifolds with respect to #.

Definition 2.9. M3 is prime if whenever M = N # L then either N or L is
homeomorphic to S3.

Remark. If M = N # L and N ∼= S3 then L ∼= M , and vice versa.

Definition 2.10. M is irreducible if every smoothly embedded S2 in M bounds
a 3–ball.

Note. We have no examples yet of prime or irreducible 3–manifolds.

Definition 2.11. Suppose X,Y ⊆ Z. We say X is ambient isotopic (dif-
feotopic) to Y if there exists a continuous (smooth) map F : Z × I → Z such
that, defining Ft(z) := F (t, z):

(i) For all t ∈ I, Ft is a homeomorphism (diffeomorphism).

(ii) F0 = IdZ .

(iii) F1|X : X → Y is a homeomorphism (diffeomorphism).

Figure 4: Here, X is ambient isotopic to Y in Z.

Theorem 2.3 (Alexander). Every smoothly embedded S2 ⊂ S3 is ambient iso-
topic to the equator.

Compare this to:

Theorem 2.4 (Jordan-Schoenflies). Every smoothly embedded S1 ⊂ S2 is am-
bient isotopic to the equator.

We will prove Alexander’s theorem later, but for now give the following corollary.
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Figure 5: It is not always obvious which ball a sphere bounds

Corollary 2.5. S3 is prime.

Proof. Suppose S3 = M #S N . By Alexander’s theorem, S is ambient isotopic
to a round embedding of S2 in S3 (say the equator). Thus M − int(B3) ∼=
N − int(B3) ∼= B3, and hence M ∼= N ∼= S3 ∼= B3 ∪∂ B3.

It is important that the embedding is smooth, as the following result shows.

Theorem 2.6. There exists a topological S2 ⊂ S3 which does not bound B3 on
either side.

Note. This is a generalization of the Alexander horned sphere.

Remark. The statement of Alexander’s theorem with S2 ⊂ S3 replaced by
S3 ⊂ S4 is an open problem, although it has been proved that a smoothly
embedded S3 ⊂ S4 bounds a topological ball. Brown has proved the more
general statement that a smoothly embedded Sn−1 ⊂ Sn bounds a topological
ball.

Remark. It is worth making explicit the various categories involved:

(i) Topological (TOP).

(ii) Piecewise linear (PL).

(iii) Smooth (DIFF).

These categories are all equivalent in dimension at most 3, so we move between
them freely.

Exercise 2.3.

(i) Prove that any irreducible manifold is prime.

(ii) Prove that M is orientable and S ⊂M is a non-separating 2–sphere, then
M = N # (S2 × S1).
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(iii) Suppose M is orientable. Then M is prime and reducible if and only if
M ∼= S2 × S1. Prove the forward direction.

(iv) State and prove analogous statements to (ii) and (iii) for non-orientable
manifolds.

We give one more corollary to Alexander’s theorem:

Corollary 2.7. If M ⊆ S3 is compact and has |∂M | ≤ 1 (at most one boundary
component) then M is irreducible.

Example 2.3. We give further examples of irreducible manifolds. Suppose
K ⊂ S3 is a knot, that is a smooth embedding of S1. Let N(K) ⊆ S3 be a
closed regular neighbourhood (i.e. a tubular neighbourhood) of the knot. Let
n(K) = int(N(K)). Then the knot exterior XK := S3−n(K) is irreducible, by
the previous corollary.

Figure 6: A tubular neighbourhood of the figure 8 knot

Lecture 3

We now prove Alexander’s theorem. More precisely, we will prove that any
(smoothly) embedded S2 ⊂ R3 bounds a 3-ball, from which the theorem can be
deduced as a corollary.

Exercise 3.4. Show how Alexander’s theorem follows from this statement.

We need the following lemma:

Lemma 3.8. Suppose that a manifold Mn and Bn−1
1 ⊆ ∂Mn are given, as is a

diffeomorphism ϕ : Bn−1
0 → Bn−1

1 , where Bn−1
0 ⊆ ∂Bn. Then Mn ∪ϕ Bn ∼= Mn,

as per Figure 7.

As a consequence, if B and B′ are n–balls, then B ∪∂ B′ is a ball (Figure 8(a)),
as is B −B′ if B′ ⊂ B and ∂B′ ∩ ∂B ∼= Dn−1 (Figure 8(b)).
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Figure 7: Glueing Mn to Bn along submanifolds of their boundaries is homeo-
morphic to Mn.

Figure 8: (a) B,B′ balls ⇒ B ∪∂ B′ a ball, and (b) B′ ⊂ B and ∂B′ ∩ ∂B ∼=
Dn−1 ⇒ B −B′ a ball.

Theorem 3.9. Any smoothly embedded S2 ⊂ R3 bounds a 3–ball.

Proof. Suppose S2 ∼= S ⊂ R3 is smooth. We can isotope S so that z : S → R
(the height function, giving the z co-ordinate) is a Morse function. Thus all
critical points are of the standard three types; cups (minima), caps (maxima),
and saddles, and all critical points occur at distinct heights (as illustrated in
Figure 9). Choose ai ∈ R such that (−∞, a1), (a1, a2), ..., (an−1,∞) each contain

Figure 9: (a) A cap. (b) A saddle. (c) A cup.

exactly one critical value, as in Figure 10. Let:

7



Figure 10: The red circles are regular values separating the critical points
(green). Here we have (n,w) = (6, 9).

L[a, b] := {(x, y, z) : z ∈ [a, b]}
L(a) := {(x, y, z) : z = a}
Li := L(ai)

Define n(S) to be the number of critical points. Define the width by:

w(S) =
n−1∑
i=1

|S ∩ Li|

This is the number of red circles in Figure 10. We will induct on (n(S), w(S))
lexicographically. Note that the components of Li ∩ S are all simple closed
curves, because each ai is a regular value. So by the Jordan-Schoenflies theorem,
they all bound disks. Say that β, a component of Li ∩ S, is innermost if Dβ ,
the disk bounded by β, has the property that Dβ ∩ S = β. Notice that β also
bounds a pair of disks in S. Label ai with an A (resp. B) if there is some

Figure 11: The intersection of the plane Li with the sphere. Shaded components
are innermost.

innermost curve β ⊆ Li ∩ S such that one disk of S − β contains exactly one
critical point, a maximum (resp. minimum). Note that ai could receive both
labels. Note also that a1 is labelled by B and an−1 is labelled by A. We have
cases:

Case 1: Some ai is labelled both A and B.
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Case 2: Some ai is unlabelled.

Case 3: There exists i such that ai is labelled B and ai+1 is labelled A.

Exercise 3.5. Check that we must always be in at least one of these cases.

We prove these in turn:

Case 1a: Some innermost β ∈ Li ∩ S bounds a disk in S above and bounds a disk
in S below, each with one critical point; this forms the base case of the
induction, where n(S) = 2 and w(S) = 1. We claim that in this case
S bounds a ball. To see this, cut off the two critical points with planes

Figure 12: The base case.

slightly above the minimum and below the maximum, removing two 3–
balls from S, and giving a compact cylinder. We claim that for every a ∈ R
such that the set L(a) intersects this compact cylinder, there exists ε > 0
such that S∩L[a, a+ε] bounds a 3–ball in L[a, a+ε]. This can be proved
by the implicit function theorem and the isotopy extension theorem. See
Hatcher’s Notes on basic 3–manifold topology for more details. Note that

Figure 13: The slab bounded by L[a, a+ ε].

the intersection L(a) ∩ S is a curve, so bounds a disk. Note that finitely
many of the L[a, a + ε] cover the compact cylinder. Glue these slabs
together, and re-attach the cap and cup. By Lemma 3.8, this gives a 3–
ball.

This proof continues in the lectures from week two.
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