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Lecture 28

Definition 28.1. Suppose M,N are 3–manifolds and D ⊂ ∂M and E ⊂ ∂N
are disks. Let ϕ : D −→ E be an orientation reversing homeomorphism. Then
we define the boundary connect sum of M and N to be M #∂ N := M tN/ϕ.
See Figure 1.

Figure 1: An example of the boundary connect sum.

Recall that ϕ only matters up to isotopy.

Definition 28.2. Suppose V is a handlebody and F = tFi is a collection of
closed orientable surfaces, none of which is a two-sphere. Then C := V #∂

(#∂Fi × I) is a compression body. We define the inner boundary ∂−C =
tFi×{0}C and the outer boundary ∂+C = ∂C − ∂−C.

Example 28.1. See Figure 2.
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Figure 2: Another example of the boundary connect sum. Note that the third
grey surface is a disk while the others are all annuli.

Exercise 28.1. Show that #∂ is associative, commutative and B3 is the unit.

Exercise 28.2. Show that the essential surfaces in C are

• essential disks compressing ∂+C,

• components of ∂−C and

• annuli meeting both ∂+C and ∂−C.

Example 28.2. See Figure 3.

Figure 3: An example of the boundary connect sum.
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Now we demonstrate the existence of short hierarchies, following Jaco. Sup-
pose that M0 is Haken and additionally that ∂M0 is incompressible. Let
S0 ⊂ M0 be a maximal collection of disjoint, non-parallel, closed, incompress-
ible, two-sided surfaces in M0 none of which are spheres. Since M0 is Haken,
S0 is non-empty and it is finite by Haken-Kneser finiteness. See Figure 4.

Figure 4: S0 ⊂M0 is non-empty and finite. It is convenient to take ∂M0 = ∅.

Aside. Note that closed incompressible surfaces, which are not spheres, are
essential.

Note that every component N ⊂M1 := M−n(S0) has boundary with genus
≥ 1. So N contains some essential surface by Theorem 27.5. Let S1 ⊂M1 be a
maximal collection of disjoint, nonparallel, two-sided, essential surfaces in M1:
these are the green lines in Figure 5. Again, S1 cuts every component of M1 and
S1 is finite by Haken-Kneser finiteness in the bounded case. See the addedum
to Exercise 5.5. Define M2 := M1 − n(S1) and let C be any component of M2.

Figure 5: The component C contains an essential surface.

Proposition 28.1. The component C is a compression body.

Proof. Suppose that some component G ⊂ ∂C is compressible into C. So let
Gi, Di be a sequence where G0 = G and Di compresses Gi in the same direction
as D0, into C. Define Gi+1 = (Gi)Di

. So we get a sequence

G0
D0−→ G1

D1−→ · · · Dn−1−→ Gn.

See Figure 6.
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Figure 6: The first few terms in the sequence (Gi, Di).

Note that Gi+1 may be disconnected, as in Figure 7.

Figure 7: Gi+1 may be disconnected.

Claim. If some component of Gn is a 2–sphere then it bounds a 3–ball in C.

Proof sketch. M is irreducible, thus C is irreducible as well.

So cap off such 2–spheres, deleting them from Gn.

Claim. The closed surface Gn is incompressible in M .

Proof. As Gn is last in the sequence, Gn cannot compress into C. So suppose
E is a surgery disk for Gn in the other direction. See Figure 8.

Figure 8: E is a compressing disk for Gn in the other direction. C is all of the
grey area.
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Then we can do the following: Isotope E off of S0, then off of S1 and then
off of {Di}. It follows that E is a surgery disk for Gn in the compression body
cobounded by G0 and Gn. Thus Gn is the inner boundary of this compression
body and so is essential. Thus E is trivial, as desired.

To finish the proposition, deduce that the components of Gn are parallel to
components H ⊂ S0 since Gn is essential, closed and disjoint from S0 (as it lies
in C). Again see Figure 8.

Now let S2 ⊂ M2 be a collection of essential disks, cutting all compression
bodies into products. Let S3 ⊂ M3 be a collection of vertical annuli (one per
product). Finally S4 ⊂M4 is a collection of disks cutting all handlebodies into
3–balls, as in Figure 9. This proves the existence of short hierarchies.

Figure 9: S3 is a collection of vertical annuli; cut along these annuli to get a
collection of handlebodies. Then cutting along S4 gives a collection of 3-balls.

Lecture 29

In this lecture, we again follow Lackenby.

Definition 29.3. A boundary pattern P for M3 is a trivalent graph embedded
in ∂M . We allow P to be the empty set, to be disconnected and to have simple
closed curves as components.

Example 29.3. Trivalent graphs in S2 = ∂B3 are patterns for B3. See Fig-
ure 10.
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Figure 10: Six examples of trivalent graphs in S2. Note that (e) is a disconnected
pattern.

Suppose (M,P ) is a manifold equipped with a boundary pattern. Suppose
S ⊂ M is properly embedded and ∂S is transverse to P . So ∂S misses the
vertices of P and intersects the edges of P transversely. Let N = M −n(S) and
let

Q = (P − n(S)) ∪ ∂S+ ∪ ∂S−.

So Q is a pattern for N and we write (M,P )
S−→ (N,Q). See Figure 11.

Figure 11: A picture of the cutting.

Definition 29.4. Let P be a boundary pattern for M . Then we call P essential
if for any (D, ∂D) ⊂ (M,∂M) with ∂D transverse to P and |∂D ∩ P | ≤ 3 we
have

• a disk E ⊂ ∂M such that ∂E = ∂D and

• the intersection E ∩ P contains at most one vertex of P and contains no
cycles of P .

Exercise 29.3. Verify that if P is essential then we get the implications shown
in Figures 12 to 15:
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Figure 12: The case ∂D ∩ P = ∅.

Figure 13: The case |∂D ∩ P | = 1 is not possible.

Figure 14: The case |∂D ∩ P | = 2.

Figure 15: The case |∂D ∩ P | = 3.

Exercise 29.4. Analyse the examples of (B3, P ) given above. Which are, and
which are not, essential?

Exercise 29.5. Give necessary and sufficient conditions for P to be an essential
pattern for B3.

Example 29.4. If M0 = T3 = I3/∼ then S0 = {z = 0} is an essential torus,
S1 = {x = 0} ⊂ M1 is an essential annulus and S2 = {y = 0} ⊂ M2 is an
essential disk. We can see this in Figure 16.
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Figure 16: Pictures of these cuttings with boundary patterns. For M3, P3 is
the 1–skeleton of the cube.

Definition 29.5. Let P ⊂ ∂M be a pattern. We say P is homotopically
essential if the following condition hold. For any map f : (D, ∂D) −→ (M,∂M)
(which need not be an embedding) transverse to P , we define Z = Zf = ∂D ∩
f−1(P ). If |Z| ≤ 3 then there is a homotopy H : D × I −→M such that

• for all t: Ht|Z = f |Z,

• H0 = f ,

• H1(D) ⊂ ∂M and finally

• H1(D) contains at most one vertex of P and contains no cycles of P .

Exercise 29.6. If P is homotopically essential, then P is essential.

Theorem 29.1 (9.1 in Lackenby). If P is essential, then it is homotopically
essential.

We will indicate a proof, using special hierarchies, in the next lecture.

Exercise 29.7. Theorem 29.1 implies the Disk Theorem. As a hint, recall that
we allow P = ∅.

Lecture 30

We pause to give another example of a hierarchy.

Example 30.5. Consider the knot K ⊂ S3 shown in Figure 17: the (1, 1,−3)–
pretzel knot. The surface shown is a spanning surface for K. This is one of the
two so-called checkerboard surfaces for this diagram of K.
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Figure 17: A diagram of the (1, 1,−3)–pretzel and S, one of its two checkerboard
surfaces.

Near a twist we see a half-twisted band, as in Figure 18.

Figure 18: A half twisted band.

Let N = N(K) be a regular neighbourhood and write X = XK = S3−n(K).
See Figure 19. Let S0 be the remains of the spanning surface in X.

Figure 19: (a) A picture of N(K), S0 and (b) N(S0).

Let M0 = X and cut M0 along S0 to get M1. Thus, as M1 is a genus two
handlebody, we find that ∂S±0 gives a pattern to ∂M1, shown in Figure 20.

9



Figure 20: A pattern to ∂M given by ∂S±. Note that M1 is the handlebody on
the outside.

The two components of P in ∂M1 cobound an annulus, the remains of ∂N .
We take S1 to be the union of a pair of disks as in Figure 21.

Figure 21: The essential surface S1 in M1, consisting of two disks which meet
∂M1 in two loops around the holes.

Now cut along S1 to get M2
∼= B3.

Exercise 30.8. Show that (M2, P2) is homeomorphic to the pattern shown in
Figure 22.

Figure 22: A 3–ball with a pattern.

Exercise 30.9. Show that P2 ⊂ ∂M2 is essential. Figure 23 may be helpful.
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Figure 23: (M2, P2) ∼= Oct× I where Oct denotes an octagon.

Claim. The surface S0 ⊂ X is essential.

Proof. Suppose (D, ∂D) ⊂ (X,S0) is a surgery disk. So consider D ∩ S1 ⊂ D.
This is a collection of simple loops and arcs.

1. Suppose α is an innermost loop. Then α bounds E in D. So (E,α) ⊂
(M2, ∂M2) and α∩P2 = ∅ which implies that we may isotope E past S1,
reducing |S1 ∩D|. See Figure 24.

Figure 24: We may isotope E past S1, reducing |S1 ∩D|.

2. Suppose α ⊂ D is an outermost arc of S1∩D. So α cuts off a bigon E. So
(E, ∂E) ⊂ (M2, ∂M2) is a bigon and ∂E ∩ P2 is exactly two points. But
(M2, P2) is essential and we continue as usual.

So we may assume that D ∩ S1 = ∅. So (D, ∂D) embeds in (M2, ∂M2) with
∂D ∩ P2 = ∅. Since M2 is a ball we find that D is parallel to a disk D′ ⊂ S0.
So S0 is incompressible. Now by Lemma 20.2 (1.10 in Hatcher) S0 is boundary
incompressible. It is also possible to directly prove that by repeating the proof
using bigons. See Figure 25.
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Figure 25: D is parallel to a disk D′ ⊂ S0.

We now give the ideas necessary to prove Theorem 29.1. We need a few
more definitions.

Definition 30.6. Suppose S ⊂ (M,P ) is properly embedded and suppose P ⊂
∂M is an essential pattern. A surgery bigon D for S is a pattern surgery if
|β ∩ P | ≤ 1 where ∂D = α ∪ β and α = ∂D ∩ S. Say D is trivial if α cuts a
bigon E out of S with ∂E = α ∪ γ and |γ ∩ P | ≤ 1. Otherwise call D a pattern
compression.

Definition 30.7. If S is essential and all pattern surgeries are trivial, we call
S pattern essential. See Figure 26.

Figure 26: A picture of what it means to be pattern essential.

Definition 30.8. A special hierarchy is a sequence (Mi, Pi)
Si−→ (Mi+1, Pi+1)

where all Pi are essential and all Si are pattern essential. We do not allow Si

to be a sphere.

Proposition 30.2. If S ⊂ (M,P ) is essential we may isotope S to be pattern
essential.

Proof. Exercise.
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Using the above one can show the following two propositions which imply
Theorem 29.1.

Proposition 30.3. If P is a pattern for M ∼= B3 and is essential, then P is
homotopically essential.

Proposition 30.4. If (M,P )
S−→ (N,Q) are all essential and Q ⊂ ∂N is

homotopically essential, then P is homotopically essential in M .
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