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Lecture 4

(Proof continued from last lecture).

Case 1b There are innermost α, β ⊂ Li∩S so that α bounds D above, β bounds E
below. Let D′, E′ be the disks bounded by α, β, inside of Li. So, by the
base case D ∪D′ (E ∪ E′) bounds a 3–ball. Use this 3–ball to define an
ambient isotopy that flattens D (E), pushing the critical point just below
(above) the plane Li.

Exercise 4.1. Show that this reduces w(S).

Case 2 The regular value ai is not labelled. For this case, we first have to introduce

Definition 4.1. Suppose F 2 ⊂M2 is properly embedded (i.e. a subman-
ifold, i.e. embedded and F ∩ ∂M = ∂F ). We say (D2, ∂D) ⊂ (M,F ) is a
surgery disk for F if D ∩ F = ∂D.

Let n(∂D) be an open annular neighbourhood of ∂D, in F . Let D+, D−
be parallel copies of D in M . Define F surgered along D by FD :=
(F − n(∂D)) ∪D+ ∪D−, as in Figure 1.

Figure 1: Surgery. FD := (F − n(∂D)) ∪D+ ∪D−.

We now return to case 2. Suppose β ⊂ S ∩Li is innermost. So, β bounds
D above, E below, D ∪β E = S and D,E each contain at least 3 critical
points. Say β bounds a disk B ⊂ Li. So:

SB = S+ ∪ S−, S+
∼= D ∪B+, S− ∼= E ∪B−.
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Thus n(S+), n(S−) < n(S) since n(S+)+n(S−) = n(S)+2. By induction,
S+, S− each bound a 3–ball X+, X− thus so did S, applying Lemma 1.3
in Hatcher’s notes. In the first case X+ ∩ X− = B and so we take the
union. In the second case X+ ⊂ X−, we take the difference. See Figure 2.

Figure 2: The case when (a) x+ ∩X− = ∅ or (b) X+ ⊆ X−.

Case 3 The regular value ai is labelled onlyB and the regular value ai+1 is labelled
only A. Between Li and Li+1 we have S∩L[ai, ai+1] is a union of cylinders,
caps, cups, pairs of pants, upside down pairs of pants and pants with
inverted legs, as illustrated in Figure 3.

Figure 3: S ∩L[ai, ai+1] is a union of (a) cylinders, (b) caps, (c) cups, (d) pairs
of pants, (e) upside down pairs of pants, (f) pants with inverted legs and (g) an
upside down version of (f) (not shown).

2



Note that there is at most one critical point in S ∩ L[ai, ai+1], so it is a
saddle (check this using the labelling). Using the labelling deduce that
either α or β is a cuff of the pants.

Figure 4: Two examples of how may isotope E to be in Li and then upwards,
canceling two critical points.

We have that β is innermost in Li and β bounds (in S) a disk below, E,
with a single critical point (minimum). Hence, by the base case, we may
isotope E to be in Li and then upwards to cancel two critical points, as
in Figure 4. Thus, we have isotoped S to a sphere S′ such that n(S′) =
n(S)− 2. This completes the induction step and so, the proof.

Lecture 5

Definition 5.2. Say a 2–sphere S ⊂ M3 is essential if no component of M −
n(S) is a 3–ball.

Incompressible surfaces

Definition 5.3. Suppose F 2 ⊂M3 is properly embedded. Suppose (D, ∂D2) ⊂
(M,F ) is a surgery disk. Say that D is a trivial surgery disk if ∂D ⊂ F is equal
to 1 ∈ π1(F ) where π1(F ) is the fundamental group of F . We say that D is a
compressing disk if ∂D ⊂ F is not equal to 1 ∈ π1(F ).

An alternative definition is: D is a trivial surgery disk if ∂D bounds a disk
in F . See Figure 5.
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Figure 5: Here, D is a trivial surgery disc for F .

Exercise 5.2. Check that a simple closed curve α ⊂ F bounds a disk E ⊂ F
if and only if [α] = 1 ∈ π1(F ).

Definition 5.4. Suppose F ⊂ M is either proper embedded or F ⊂ ∂M is
a subsurface. Then we say that F is compressible if and only if there exists a
compressing disk for F . Otherwise we call F incompressible.

Example 5.1. Let T ⊂ S3 be the standard embedding, i.e. ∂N(U) where U is
the unknot. Then T is compressible since there are two compressing disks. We
call them the meridian disk and the longitude disk respectively, as illustrated
in Figure 6.

Figure 6: The meridian disk is in green while the longitude disk is red. The
boundary of the meridian disk is a circle in T but its interior is in S3.

Example 5.2. If M = D × S1 is a solid torus then ∂M ⊂M is compressible.

Exercise 5.3. Show that T = T2 × { 12} ⊂ T2 × I = M is incompressible.

Figure 7: T = T2 × { 12} ⊂ T2 × I = M is incompressible.

4



Exercise 5.4. Suppose that M is an irreducible three-manifold and F,G ⊂
∂M are disjoint, incompressible subsurfaces. Suppose that ϕ : F −→ G is a
homeomorphism. Show that M/ϕ is irreducible.

Note. One can check M = D2 × S1 is irreducible but D(M), the double of M ,
is not. Here D(M) = M0 tM1/ ∼, where (x, 0) ∼ (x, 1) if and only if x ∈ ∂M
where Mi = M × {i}.

Exercise 5.5.

1. If F ⊂ S3 is closed, F 6= S2, then F is compressible.

2. (Alexander) Any T2 ⊂ S3 bounds a solid torus (D2 × S1) on at least one
side.

Definition 5.5. Let Vg be the handlebody of genus g, i.e.

Vg = D2 × S1 ∪D2 D2 × S1 ∪D2 . . . ∪D2 D2 × S1︸ ︷︷ ︸
g times

By convention, V0 = B3. See Figure8.

Figure 8: The handlebody V3. Note that Vg is “solid”, and not a surface.

Example 5.3. Find S2 ↪→ S3 which does not bound a handlebody on either
side. Here S2 denotes a surface of genus 2.

Remark. ∂Vg = #gT2 = Sg because ∂(D2 × S1) = S1 × S1 = T2.

Products and Bundles

A map ρ : Z −→ X is a Y –bundle (or a fibre bundle) if for all x ∈ X there exists
a neighbourhood x ∈ U ⊂ X and a homeomorphism hU : Y × U −→ ρ−1(U)
such that the composition ρ ◦ hU is the projection onto the second coordinate.
Here, Z is called the total space, X the base space, Y the fibre and hU is called
a local trivialization.
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Example 5.4. Let Z = D2 × S1 and denote ρi be the projection onto the i–th
coordinate. Then ρ1 : Z −→ D2 is a S1–bundle map and ρ2 : Z −→ S1 is a
D2–bundle map.

Lecture 6

Bundles and Neighbourhoods

See Lackenby §6.

Definition 6.6. We say Z
ρ−→ X, Z ′

ρ′−→ X are equivalent Y –bundles if there
is a homeomorphism h : Z ′ −→ Z making the following diagram commute

Z ′
h- Z

X

ρ′

?
IdX- X

ρ

?

Corollary 6.1 (See Corollary 6.3 in Lackenby’s notes). If X is contractible

then any Y –bundle Z
ρ−→ X is equivalent to the product bundle Y ×X ρ2−→ X.

Exercise 6.6. Prove this directly for X = B1,B2.

Exercise 6.7. Find a S1–bundle over S2 that is not equivalent to the product
bundle. It follows that the fundamental group π1(X,x) = {1} is not sufficient
hypothesis for Corollary 6.1.

Lemma 6.2 (See Lemma 6.4 in Lackenby’s notes). For all n ∈ N there are
exactly two Bn–bundles over S1 up to equivalence. These are

• the trivial bundle Bn × S1

• the twisted bundle Bn×̃S1 = Bn×I/(x, 0) ∼ (r(x), 1), where r(x1, . . . , xn) =
(x1, . . . ,−xn) is a reflection.

Version of the Tubular Neighbourhood Theorem

Definition 6.7. Suppose ρ : Z −→ X is a bundle. Then a map s : X −→ Z is
a section of ρ if ρ ◦ s = IdX .

Theorem 6.1. Suppose Fn−k ⊂ Mn is properly embedded. Then there is a
closed neighbourhood N = N(F ) ⊂M of F and a Bk–bundle map such that

1. the inclusion i : F −→ N(F ) is the zero section, i.e. i(x) = 0 ∈ Bk =
ρ−1(x),

2. N is a codimension 0 submanifold of M (with corners) and
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3. any N ′(F ) satisfying the properties (1) and (2) is ambient isotopic to
N(F ) fixing F pointwise.

Figure 9: Two inequivalent bundles over S1: (a) B1 × S1 and (b) B1×̃S1.

Notation: We denote by n(F ) the interior of N(F ). Furthermore, M cut along
F , is the manifold (perhaps with corners) M − n(F ). When F is codimension

1 manifold there is a regluing map M − n(F )
reglue−→ M .

Figure 10: Cut open along N(F ) and glue back along N ′(F ).

Exercise 6.8. All I–bundles over S2 are trivial.

Figure 11: The trivial I–bundle over S2.

7


