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Lecture 7

Suppose that ρ : G2 → F 2 is a double cover. Roughly, this corresponds to an
index two subgroup of π1(F ), and hence to a homomorphism π1(F ) → Z/2Z.
Then for all x ∈ F , |ρ−1(x)| = 2, so there is a canonical involution τ : G → G,
where τ(y) is defined to be the unique element of ρ−1(ρ(y)) − {y}. For an
example, see Figure 1.

Figure 1: Here the involution τ is rotation by π about an axis.

Define T = (G × I)/ ∼, where (y, 0) ∼ (τ(y), 0). Then P : T → F given
by (y, t) 7→ ρ(y) is an I–bundle over F . Now suppose that ρ : G → F is the
orientation double cover; so G = F×{0, 1} if F is orientable, and G is orientable

if F is not; for example T2 ×2→ K2 (Figure 2).

Figure 2: The torus is a double cover for the Klein bottle.
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Then P : T → F as above is called the orientation I–bundle (Figure 3).

Figure 3: The orientation I–bundle over K2 − int
(
D2
)
.

We have the following:

Theorem 7.1. Suppose that (F 2, ∂M) ⊂ (M3, ∂M) is properly embedded. Then
N(F ) is bundle equivalent to an I–bundle over F . If additionally M is ori-
entable, then N(F ) is bundle equivalent to the orientation I–bundle over F .

Example 7.1. Figure 4 shows the I–bundle for T2.

Figure 4: The orientation I–bundles are the only I–bundles one can draw in
three-space.

Definition 7.1. We say that F ⊂M is two-sided if F separates N(F ). Other-
wise F is one-sided.

Example 7.2. The core curve α in the Möbius band M2 is one-sided. D2×{p} ⊂
D2×S1 is two-sided for any p ∈ S1. We can also find a Möbius band in D2×S1

that is one-sided. M2 ×
{

1
2

}
is two-sided in M2 × I; see Figure 5.

Exercise 7.1. If F ⊂M is properly embedded, give a relationship between the
orientability of M and F , and the number of sides of F .

Definition 7.2. If ρ : T → F is an I–bundle, then X ⊂ T is vertical if X is a
union of fibres.

Definition 7.3. The vertical boundary of an I–bundle ρ : T → F is ∂vT :=
ρ−1(∂F ).
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Figure 5: (a) α is one-sided in M2. (b) α is two-sided in A2 (c) M2 is one-sided
in D2 × S1 (d) D2 is two-sided in D2 × S1.

Definition 7.4. The horizontal boundary of an I–bundle ρ : T → V is ∂hT =
∂T − int(∂vT ).

Exercise 7.2. ∂vT , ∂hT and the zero section are all incompressible in T , except
for ∂vT when T = I × D2.

Exercise 7.3. If ∂F 6= ∅, F is compact and connected, and ρ : T → F is the
orientation I–bundle, then T is a handlebody.

Before moving on, we summarize examples of 3–manifolds discussed so far.

Example 7.3. We have seen:

(i) S3, P3 and T3, which are closed.

(ii) Vg, the handlebodies.

(iii) I–bundles and S1–bundles over surfaces.

8 Lecture 8: Triangulations

Definition 9.1. Define the k–simplex by:

∆k =
{

(x0, . . . , xk) ∈ Rk+1 :
∑
xi = 1 and xi ≥ 0 for all i

}
Definition 9.2. The facet δI ⊂ ∆k is the subsimplex of the form:

δI = {(x0, ..., xk) ∈ ∆k : xi = 0 for all i ∈ I}

Definition 9.3. If δ ⊂ ∆ and δ′ ⊂ ∆′ are faces (codimension 1 facets), then a
face pairing is an isometry ϕ : δ → δ′.

3



Definition 9.4. We call a collection T of simplices and face pairings a trian-
gulation.

Remark. We require that for every face pairing ϕ ∈ T that if ϕ : δ → δ′ then
δ 6= δ′.

Definition 9.5. The number of simplices is written |T |. The underlying space
is written ||T ||, and is defined by:

||T || :=
(⊔

∆i

)
/{ϕj}

Definition 9.6. The quotient map is given by π :
⊔

∆i → ||T || and we define
πi : ∆i → ||T || by restriction: πi = π|∆i.

Example 9.1. If T is the pair of simplices in Figure 6 with face pairings given
by the arrows, then ||T || ∼= T2.

Figure 6: ||T || ∼= T2.

Similarly, if we draw T as in Figure 7 then ||T || = M2.

Figure 7: ||T || ∼= M2.

Exercise 9.1. Find necessary and sufficient combinatorial conditions on T so
that ||T || is a (PL) manifold of dimension 1, 2 or 3.

Hauptvermutung (Moise). Every topological 3–manifold admits a triangula-
tion, unique up to subdivision. In particular, for any M3, there exists a trian-
gulation T such that ||T || ∼= M .

Remark. This is one important step in showing, in dimension three, that the
categories TOP, PL and DIFF are all equivalent.
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Definition 9.7. Suppose (M3, T ) is a triangulated manifold. An orientation
of M is a choice of orientation for all ∆ ∈ T , such that all face pairings reverse
the induced orientation on faces.

Example 9.2. The annulus is orientable, but the Möbius band is not. See
Figure 8.

Figure 8: The annulus is orientable as all face pairings reverse the induced
orientation on faces.

Proposition 9.1 (Proposition 6.5 in Lackenby). An n–manifold (Mn, T ) is
orientable if and only if for every simple closed curve α ∈ M we have N(α) ∼=
Bn−1 × S1.

Remark. We can also determine orientability in DIFF using sign(det(Dh))
where h ranges over the overlap maps, as in Figure 9. We can also define
orientation in TOP using homology.

Figure 9: Orientation in DIFF arises from overlap maps of charts.

Definition 9.8. Define ∆(k) to be the union of k–dimensional facets of ∆. If
(M,T ) is a triangulated 3–manifold, define M (k), the k–skeleton of M to be the

manifold with triangulation T =
⋃|T |

i=1 πi(∆
(k)). Figure 10 shows the k-skeleta

of ∆.

Example 9.3. Figure 11 shows two examples of identifications.
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Figure 10: The k–skeleta of ∆.

Figure 11: Two different views of the same triangulation for B3.

Exercise 9.2. Verify that the triangulation in Figure 12 is a three-manifold,
and recognise it.

Figure 12: Which three-manifold is this?

Definition 9.9. An isotopy F : M × I →M is normal with respect to a trian-
gulation T of M if for all t ∈ I, the homeomorphism Ft preserves M (k) for all
k, and F0 = IdM . See Figure 13 for an example.

Figure 13: A normal isotopy.

Remark. Thus M (0) is fixed pointwise, and all other facets are fixed setwise.

Definition 9.10. Say an arc (α, ∂α) ⊂ (∆2, ∂∆) is normal if the points of ∂α
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are in distinct edges of ∆, and α ∩∆(0) = ∅. See Figure 14 for some examples
and a non-example.

Figure 14: (a) Normal arcs. (b) This is not a normal arc.

Definition 9.11. A disk (D, ∂D) ⊂ (∆3, ∂∆) is a normal disk if ∂D is trans-
verse to ∆(1), ∂D meets each edge of ∆(1) at most once, and D∩∆(0) = ∅. See
Figures 15(a) and (b) for examples and 15(c) and (d) for non-examples.

Figure 15: (a) There are four normal triangles. (b) There are three normal
quadrilaterals. (c) This is not even a disk, let alone normal. (d) This is also not
a normal disc.

Exercise 9.3. Prove that:

(i) There are only three normal arcs up to normal isotopy.

(ii) There are only seven normal disks up to normal isotopy.

Recall that πi : ∆i → M is defined by πi = π|∆i, where π is the quotient
map.

Definition 9.12. Suppose S ⊂ M is a surface. Say S is normal if π−1i (S) is a
disjoint collection of normal disks for all i.

Example 9.4. The three normal disks in the tetrahedron shown in Figure 16
give a normal surface under the identification indicated by the arrows.

Exercise 9.4. Show that, with triangulations as in Figure 17, (a) and (b) are
three manifolds, and recognise them.

Theorem 9.2 (Haken-Kneser Finiteness). Suppose (M,T ) is a connected, com-
pact triangulated 3–manifold. Suppose S ⊂ (M,T ) is an embedded normal sur-
face. Then if |S| ≥ 20|T | + 1 there are components R,R′ ⊂ S so that R,R′

cobound a product component of M − S.
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Figure 16: Recognise the normal surface F by computing |∂F |, χ(F ) and the
orientability.

Figure 17: Show that (a) and (b) are three manifolds and recognise them.

Remark. Figures 18 and 19 show examples of parallel surfaces.

Figure 18: Here both R1 & R′1 and R2 & R′2 bound copies of D2 × I.

Figure 19: R and R′ bound a product.

Proof of Theorem 9.2. Recall that S ∩∆ for ∆ ∈ T is a finite collection of nor-
mal disks. Consider the subcollection of disks of a fixed type, that is a normal
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isotopy class. Call the outermost disks ugly, the second outermost disks bad,
and all other disks good, as illustrated in Figure 20.

Figure 20: (a) Ugly disks. (b) Bad disks. (c) Good disks.

Thus there is a component F ⊂ S, such that F is a union of good disks. To see
this, note that there are at most 20|T | ugly and bad disks in total. There are
at most five types of disk in each S ∩∆, and at most four of each can be ugly
or bad; see Figures 21(a) and (b).

Figure 21: (a) There are at most five types of disk in each S ∩∆ because (b)
two normal quadrilaterals of different types must intersect.

Now let N be the closure of the union, over all ∆i, of all components of ∆i − S
that are adjacent to F , as in Figure 22.

Figure 22: N is the closure of the union over all ∆i of all components of ∆i−S
that are adjacent to F .

Exercise 9.5. Prove that N is an I–bundle and either N is ambient isotopic
to N(F ) or F is two-sided and parallel to ∂hN .
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