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Lecture 10

We recall properties of π1:

Definition 10.1. Suppose A and B are groups. Then if A = 〈ai | rk〉 and
B = 〈bj | sl〉, their free product A ∗B is given by

A ∗B = 〈ai, bj | rk, sl〉 .

Theorem 10.1 (van Kampen). If W = X ∪Z Y and Z is path connected (as in
Figure 1), then, choosing a base point p ∈ Z, π1(W,p) ∼= π1(X, p) ∗ π1(Y, p)/N ,
where N is the normal subgroup generated by:

{i∗(z)(j∗(z))−1 : z ∈ π1(Z, p)}

where i : Z ↪→ X and j : Z ↪→ Y are the inclusions.

Figure 1: If W = X ∪Z Y , then π1(W ) = (π1(X) ∗ π1(Y ))/N .

Corollary 10.1. If π1(Y, p) = {1} then π1(W,p) = π1(X, p)/N where N is the
normal subgroup generated by:

{i∗(z) : z ∈ π1(Z, p)}.

Corollary 10.2. If π1(Z, p) = {1} then π1(W,p) = π1(X, p) ∗ π1(Y, p).

Proposition 10.3. If (M,T ) is triangulated then π1(M) = π1
(
T (2)

)
.
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Exercise 10.1. Prove Proposition 10.3. See Figure 2 for a hint.

Figure 2: Hint: Attach 3-balls one by one.

Proposition 10.4. π1(T (2)) = π1(T (1))/N where N is the normal subgroup
generated by boundaries of two-simplices in T . Note that π1(T (1)) is a free
group, as T (1) is a connected graph.

We now give several example computations.

Example 10.1. Consider Figure 3, where the faces are glued according to the
arrows.

Figure 3: What is the fundamental group of this manifold?

Exercise 10.2. Check that this is a 3–manifold.

Step 1: Find a spanning tree for T (1). Here T (1) is the graph shown in Figure 4
and so the spanning tree is just the vertex.

Figure 4: T (1) in this case. The spanning tree is the single vertex circled in
green.

Step 2: Give labels to the non-tree edges of T (1), as in Figure 4.

Step 3: Read off relations from faces of T (2). There is one relation per face in
the quotient. Here we have

〈
a, b | a2 = b, b2a = 1

〉
.
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Step 4: (optional) Use Tietze transformations to simplify:〈
a, b | a2 = b, b2a = 1

〉 ∼= 〈
a | (a2)2a = 1

〉 ∼= Z/5Z.

Example 10.2. (A non-Abelian example.) The one-quarter turn space Q is
the quotient of the unit cube as shown in Figure 5:

Figure 5: Two visualisations of how to glue faces to get Q.

Step 1: The 1–skeleton is the graph in Figure 6(a) with four edges and two
vertices. We take the circled edge as the spanning tree.

Figure 6: (a) The 1–skeleton and spanning tree. (b) After labelling the non-
tree edges, read off relators from the faces. Edges of the spanning tree do not
contribute to the relators.

Step 2: Label the non-tree edges with a, b, c.

Step 3: The three squares give relations and we have the following presentation

π1(Q) = 〈a, b, c | a = cb, ba = c, abc = 1〉 .

Exercise 10.3. Recognize π1(Q). In particular, it is not Abelian.
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Abelian groups

Definition 10.2. Suppose that Z is an Abelian group. Define N := {z ∈ Z : z
is finite order}. Then N < Z is called the torsion subgroup of Z.

Recall that A⊕B is the direct product of A and B.

Proposition 10.5. Suppose Z is a finitely generated Abelian group. Then there
exist unique k ∈ N and N a finite group so that Z ∼= Zk ⊕N .

Proof. This follows from the classification of finitely generated Abelian groups.

Definition 10.3. We call k the rank of Z, and use the notation rk(Z) = k.

Definition 10.4. Let G be any (finitely generated) group. The commutator
subgroup of G is [G,G], the subgroup of G generated by all elements of the form
xyx−1y−1 for x, y ∈ G.

[G,G] =
〈
xyx−1y−1 | x, y ∈ G

〉
/ G.

Definition 10.5. We define the Abelianization of G to be GAb = G/[G,G].

Definition 10.6. We define the first homology group of M3 to be H1(M,Z) :=
[π1(M)]Ab.

Example 10.3. Let M3 = N3 #P 3. Then it follows by van Kampen’s theorem
that π1(M) ∼= π1(N) ∗ π1(P ). Therefore H1(M) = H1(N)⊕H1(P ).

Exercise 10.4. Show that (A ∗B)Ab = Aab ⊕BAb.

Example 10.4. As in the last example we have that

π1(#gS
2 × S1) = Fg

∼= ∗gZ,

so H1(#gS
2 × S1) = Zg has rank g. We denote #gS

2 × S1 by Mg.

Proposition 10.6. If M is connected, orientable, compact and M ∼= N #Mg,
then g ≤ rk(H1(M)).

Note here that π1 is finitely generated since M is compact.

Proof. We know that H1(M) = H1(N)⊕H1(Mg), so:

rk(H1(M)) = rk(H1(N)) + g.

This is the first step in the existence proof for connect sum decompositions.
For the next step, we need the following proposition:

Proposition 10.7. Suppose M is connected, orientable and compact. Then
there exists a decomposition

M ∼= #k
i=1Ni # (#gS

2 × S1) # (#nB3)

where each Ni is irreducible and not S3, B3 or S2 × S1.
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Proof.

Step 1: Let n be the number of components of ∂M that are 2–spheres. Let
F be the frontier of a “tree-like” union of arcs and two-sphere boundary
components, as shown in Figure 7. Form M − n(F ) and cap off F± by
3–balls. From now on we assume that n = 0.

Figure 7: F is the frontier of a “tree-like” union of arcs and two-sphere boundary
components.

Step 2: Proposition 10.6 gives us an upper bound on the number of summands
of M homeomorphic to S2 × S1. Thus from now on we may assume that
g = 0. It follows that any 2–sphere embedded in M separates.

For Step 3, we require the following definitions.

Definition 10.7. We define S3
k := #k

i=1B3 and we call this a ball with holes or
a punctured sphere. See Figure 8.

Figure 8: Here, n = 4.

Exercise 10.5. Show that (#nB3) ∪S2 (#mB3) ∼= #n+m−2B3.

Definition 10.8. We call S ↪→ M a sphere system if S is an embedding of a
disjoint collection of 2–spheres; see Figure 9.

Definition 10.9. A system S ↪→M is reduced if no component of M −n(S) is
homeomorphic to a punctured sphere. The sphere system in Figure 9 is reduced.
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Figure 9: A reduced sphere system S in M .

Lectures 11 and 12

Step 3: If M is irreducible we are done. If M ∼= S3 we are done by Alexan-
der’s theorem. So suppose that M contains an essential 2–sphere. For
the reminder of the proof, we fix a finite triangulation T of M . So our
assumptions give us a reduced sphere system S ⊂M .

Normalization Lemma. For any reduced sphere system S ⊂ M there
is a normal, reduced sphere system S′ such that |S′| ≥ |S|.

If we assume this lemma, we get the following proposition:

Proposition 11.8. (Existence) Let M be defined as above. Then M ∼=
#n

i=1Ni such that all Ni are irreducible and Ni 6∼= S3,B3.

Proof. Let S1 denote an essential 2–sphere, so M = N1 #S1
N2. If N1 is

homeomorphic to #kB3 for k ≥ 1, then we have a contradiction. So, S =
{S1} is a reduced sphere system. Let S be a maximal sphere system (i.e.
of maximal size). This exists because any normal reduced system has at
most 20|T | components; this follows from the Haken-Kneser finiteness and
the normalization lemma. Since S is maximal , if we cut M along S and
cap off with 3–balls the resulting manifolds {Ni} are all irreducible.

To prove the normalization lemma, we must normalize the given system
S.

Proof of Normalization Lemma. Isotope S to be transverse to T (k) for
k = 0, 1, 2, i.e. S ∩ T (0) = ∅, |S ∩ T (1)| =: w(S) (the weight of S) is
finite, S ∩ T (1) is transverse and S ∩ ∂∆i is a finite collection of simple
closed curves; see Figure 10. We alternatingly apply surgery and the
baseball move.
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Figure 10: (a) The sphere system can look unpleasant in the triangulation. (b)
A possible picture of S ∩ T (2).

Surgery: Suppose (D, ∂D) ⊂ (M,S) is a surgery disk, i.e. D ∩ S = ∂D.
Suppose D ∩ S ⊂ F is a component of S. As before, define FD = F −
n(D) ∪D+ ∪D−. Define SD = (S − F ) ∪ FD. Notice that ∂D separates
F , so FD = F+ ∪ F−. See Figure 11.

Figure 11: Notice that ∂D separates F , so FD = F+ ∪ F−.

Let X,Y ⊂ M − n(S) be the components adjacent to F and suppose
D ∩X 6= ∅. So let X+ ∪X0 ∪X− = X − n(FD) where X0 meets D and
X± are adjacent to F±, respectively. See Figure 12.

Figure 12: X+ ∪ X0 ∪ X− = X − n(FD), where X0 meets D, and X± are
adjacent to F±.

7



Note that X0
∼= #3B3. Since we assumed S is a reduced sphere system,

we find Y is not a punctured sphere.

Exercise 11.6. Y ∪F X0 is not a punctured sphere.

Claim. At most one of X+, X− is a punctured sphere.

Proof. If both are punctured spheres then so is X = X+∪F+ X0∪F− X−,
a contradiction. This proves the claim.

Let S′ = S−F thus either S+ = S′∪F+ or S− = S′∪F− or SD = S′∪FD

is a reduced system.

Using surgery: For every tetrahedron ∆ ∈ T (3), the surface S meets
∂∆ is a collection of simple closed curves. See Figure 13 for a possible
intersection pattern.

Figure 13: A possible intersection of S with the boundary of a tetrahedron.

For every simple closed curve α ⊂ ∂∆ ∩ S we do the following. Pick a
disk D ⊂ ∂∆ bounded by α. Isotope D into ∆ (∂D stays in S), as in
Figure 14.

Figure 14: Isotope D into ∆.

Use D (in ∆) to surger all curves of S ∩D, innermost first. When this is
done, S ∩∆ is a collection of disks (for all ∆).

Claim. After surgery, for all ∆ and for all simple closed curves α ⊂
∂∆ ∩ S, α meets ∆(1).
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Proof. Suppose α has weight 0 and α ⊂ f ⊂ ∆(2) a face. We surgered
along both D±, so the component sphere containing α bounds a ball as
in Figure 15.

Figure 15: We surgered along both D±, so the component sphere containing α
bounds a ball.

But surgery deletes trivial spheres. This proves the claim.

Figure 16: The intersection of S with the two-skeleton; outside of ∆ it can be
complicated.
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