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Lecture 10

We recall properties of 7y:

Definition 10.1. Suppose A and B are groups. Then if A = (a; | r;) and
B = (b; | s1), their free product A * B is given by

Ax B = (a;,b; | ri, 1) -
Theorem 10.1 (van Kampen). If W = X UzY and Z is path connected (as in

Figure 1), then, choosing a base point p € Z, m (W, p) = m1(X,p) x 71 (Y,p)/N,
where N is the normal subgroup generated by:

{i(2)(Gc(2)) " 1 2 € m(Z,p)}

wherei: Z — X and j : Z <Y are the inclusions.
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Figure 1: f W = X Uz Y, then m (W) = (m1(X) * m1(Y))/N.

Corollary 10.1. If m1(Y,p) = {1} then m(W,p) = m1(X,p)/N where N is the
normal subgroup generated by:

{is(2) 1z €em(Z,p)}.
Corollary 10.2. If m1(Z,p) = {1} then m (W, p) = m (X, p) * 71 (Y, p).
Proposition 10.3. If (M, T) is triangulated then m (M) = m (T(z)).



Exercise 10.1. Prove Proposition 10.3. See Figure 2 for a hint.

Figure 2: Hint: Attach 3-balls one by one.

Proposition 10.4. 7(T?) = 7, (T™M)/N where N is the normal subgroup
generated by boundaries of two-simplices in T. Note that wl(T(l)) is a free
group, as TV is a connected graph.

We now give several example computations.

Example 10.1. Consider Figure 3, where the faces are glued according to the
arrows.

Figure 3: What is the fundamental group of this manifold?

Exercise 10.2. Check that this is a 3—manifold.

Step 1: Find a spanning tree for 7). Here T™) is the graph shown in Figure 4
and so the spanning tree is just the vertex.

Figure 4: T™ in this case. The spanning tree is the single vertex circled in
green.

Step 2: Give labels to the non-tree edges of T, as in Figure 4.

Step 3: Read off relations from faces of T(2). There is one relation per face in
the quotient. Here we have <a, bla%?=0b, b*a= 1>.



Step 4: (optional) Use Tietze transformations to simplify:

(a,b|a® =0, b’a=1)=(a|(a®)?a=1)2Z/5L.

Example 10.2. (A non-Abelian example.) The one-quarter turn space @ is
the quotient of the unit cube as shown in Figure 5:
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Figure 5: Two visualisations of how to glue faces to get Q.

Step 1: The 1-skeleton is the graph in Figure 6(a) with four edges and two
vertices. We take the circled edge as the spanning tree.

(a)

Figure 6: (a) The 1-skeleton and spanning tree. (b) After labelling the non-
tree edges, read off relators from the faces. Edges of the spanning tree do not
contribute to the relators.

Step 2: Label the non-tree edges with a, b, c.

Step 3: The three squares give relations and we have the following presentation

ﬂ-l(Q) = (a,b,c|a:cb, ba:C, &bC:1>.

Exercise 10.3. Recognize m1(Q). In particular, it is not Abelian.



Abelian groups

Definition 10.2. Suppose that Z is an Abelian group. Define N :={z € Z : z
is finite order}. Then N < Z is called the torsion subgroup of Z.

Recall that A @ B is the direct product of A and B.

Proposition 10.5. Suppose Z is a finitely generated Abelian group. Then there
exist unique k € N and N a finite group so that Z = 7" ® N.

Proof. This follows from the classification of finitely generated Abelian groups.
O

Definition 10.3. We call k the rank of Z, and use the notation rk(Z) = k.

Definition 10.4. Let G be any (finitely generated) group. The commutator
subgroup of G is [G, G|, the subgroup of G generated by all elements of the form
xyz~ty~! for 2,y € G.

[G,G] = (zyz'y ™" |2,y € G) < G.
Definition 10.5. We define the Abelianization of G to be GAP = G/[G, G].

Definition 10.6. We define the first homology group of M3 to be Hy(M,Z) :=
[7T1(M)]Ab~

Example 10.3. Let M3 = N34 P3. Then it follows by van Kampen’s theorem
that 7T1(M) = 7T1(N) * 7T1(P). Therefore Hl(M) = Hl(N) D Hl(P)

Exercise 10.4. Show that (A x B)AP = A% g BAb,
Example 10.4. As in the last example we have that
T (#4957 x SY) = F, =2 x,7Z,
so Hy(#4S% x S') = Z9 has rank g. We denote #,5% x S by M,.

Proposition 10.6. If M is connected, orientable, compact and M = N # M,
then g < rk(Hy(M)).

Note here that 7 is finitely generated since M is compact.
Proof. We know that Hy (M) = H1(N) & Hq1(M,), so:
vk(Hy (M) = tk(Hy (N)) + g. 0

This is the first step in the existence proof for connect sum decompositions.
For the next step, we need the following proposition:

Proposition 10.7. Suppose M is connected, orientable and compact. Then
there exists a decomposition

M = #7 Ni # (#45% x S') # (#,B%)

where each N is irreducible and not S3, B2 or S? x St.



Proof.

Step 1: Let n be the number of components of OM that are 2—spheres. Let
F be the frontier of a “tree-like” union of arcs and two-sphere boundary
components, as shown in Figure 7. Form M — n(F) and cap off F'* by
3-balls. From now on we assume that n = 0.

Figure 7: I is the frontier of a “tree-like” union of arcs and two-sphere boundary
components.

Step 2: Proposition 10.6 gives us an upper bound on the number of summands
of M homeomorphic to S? x S'. Thus from now on we may assume that
g = 0. It follows that any 2—sphere embedded in M separates.

For Step 3, we require the following definitions.

Definition 10.7. We define S} := #5 ;B3 and we call this a ball with holes or
a punctured sphere. See Figure 8.

Figure 8: Here, n = 4.

Exercise 10.5. Show that (#,B3) Ugz (#mB3) = #,1m_2B3.

Definition 10.8. We call S < M a sphere system if S is an embedding of a
disjoint collection of 2—spheres; see Figure 9.

Definition 10.9. A system S < M is reduced if no component of M — n(S) is
homeomorphic to a punctured sphere. The sphere system in Figure 9 is reduced.



Figure 9: A reduced sphere system S in M.

Lectures 11 and 12

Step 3: If M is irreducible we are done. If M = S? we are done by Alexan-
der’s theorem. So suppose that M contains an essential 2-sphere. For
the reminder of the proof, we fix a finite triangulation 7" of M. So our
assumptions give us a reduced sphere system S C M.

Normalization Lemma. For any reduced sphere system S C M there
is a normal, reduced sphere system S’ such that |S’| > |S].

If we assume this lemma, we get the following proposition:
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Proposition 11.8. (FEzistence) Let M be defined as above. Then M
#I_ N, such that all N; are irreducible and N; 2 53 B3,

Proof. Let S; denote an essential 2-sphere, so M = Ny #g, No. If Ny is
homeomorphic to #,B3 for k > 1, then we have a contradiction. So, S =
{81} is a reduced sphere system. Let S be a maximal sphere system (i.e.
of maximal size). This exists because any normal reduced system has at
most 20|7’| components; this follows from the Haken-Kneser finiteness and
the normalization lemma. Since S is maximal , if we cut M along S and
cap off with 3-balls the resulting manifolds {NN;} are all irreducible. O

To prove the normalization lemma, we must normalize the given system

S.

Proof of Normalization Lemma. Isotope S to be transverse to T®) for
k=01,21ie. SNTO =g, |SNTW| = w(S) (the weight of S) is
finite, S N T is transverse and S N AA; is a finite collection of simple
closed curves; see Figure 10. We alternatingly apply surgery and the
baseball move.



Figure 10: (a) The sphere system can look unpleasant in the triangulation. (b)
A possible picture of SNT®.

Surgery: Suppose (D,0D) C (M, S) is a surgery disk, i.e. DNS = 9dD.
Suppose D NS C F is a component of S. As before, define Fp = F —
n(D)U D% U D™. Define Sp = (S — F) U Fp. Notice that D separates
F,s0 Fp = Ft UF~. See Figure 11.
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Figure 11: Notice that &D separates F', so Fp = FT UF~.

Let X,Y € M — n(S) be the components adjacent to F and suppose
DNX #0. Solet XTUXquU X~ =X —n(Fp) where X meets D and
X* are adjacent to F'*, respectively. See Figure 12.

Figure 12: X+t U XoU X~ = X — n(Fp), where X, meets D, and X* are
adjacent to F*.



Note that Xy = #3B3. Since we assumed S is a reduced sphere system,
we find Y is not a punctured sphere.

Exercise 11.6. Y Ugr X is not a punctured sphere.
Claim. At most one of X1, X~ is a punctured sphere.

Proof. If both are punctured spheres then sois X = X T Up+ XoUp- X,
a contradiction. This proves the claim. O

Let S’ = S—F thus either ST = S’UFtor S~ =S'UF or Sp =S'UFp
is a reduced system.

Using surgery: For every tetrahedron A € T®), the surface S meets
O0A is a collection of simple closed curves. See Figure 13 for a possible
intersection pattern.

Figure 13: A possible intersection of S with the boundary of a tetrahedron.

For every simple closed curve o C A NS we do the following. Pick a
disk D C 90A bounded by «. Isotope D into A (0D stays in S), as in
Figure 14.
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Figure 14: Isotope D into A.

Use D (in A) to surger all curves of SN D, innermost first. When this is
done, SN A is a collection of disks (for all A).

Claim. After surgery, for all A and for all simple closed curves a C
IANS, a meets A,



Proof. Suppose a has weight 0 and o € f ¢ A®) a face. We surgered
along both D*, so the component sphere containing o bounds a ball as
in Figure 15.

Figure 15: We surgered along both D*, so the component sphere containing o
bounds a ball.

But surgery deletes trivial spheres. This proves the claim. O

Figure 16: The intersection of S with the two-skeleton; outside of A it can be
complicated.



