MA4J2 Three Manifolds

Lectured by Dr Saul Schleimer Typeset by Anna Lena Winstel Assisted by Matthew Pressland and David Kitson

Lecture 10

We recall properties of π_1 :

Definition 10.1. Suppose A and B are groups. Then if $A = \langle a_i | r_k \rangle$ and $B = \langle b_j | s_l \rangle$, their free product A * B is given by

$$A * B = \langle a_i, b_j \mid r_k, s_l \rangle$$
.

Theorem 10.1 (van Kampen). If $W = X \cup_Z Y$ and Z is path connected (as in Figure 1), then, choosing a base point $p \in Z$, $\pi_1(W,p) \cong \pi_1(X,p) * \pi_1(Y,p)/N$, where N is the normal subgroup generated by:

$$\{i_*(z)(j_*(z))^{-1}: z \in \pi_1(Z,p)\}$$

where $i: Z \hookrightarrow X$ and $j: Z \hookrightarrow Y$ are the inclusions.

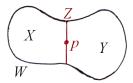


Figure 1: If $W = X \cup_Z Y$, then $\pi_1(W) = (\pi_1(X) * \pi_1(Y))/N$.

Corollary 10.1. If $\pi_1(Y, p) = \{1\}$ then $\pi_1(W, p) = \pi_1(X, p)/N$ where N is the normal subgroup generated by:

$$\{i_*(z): z \in \pi_1(Z, p)\}.$$

Corollary 10.2. If $\pi_1(Z, p) = \{1\}$ then $\pi_1(W, p) = \pi_1(X, p) * \pi_1(Y, p)$.

Proposition 10.3. If (M,T) is triangulated then $\pi_1(M) = \pi_1(T^{(2)})$.

Exercise 10.1. Prove Proposition 10.3. See Figure 2 for a hint.

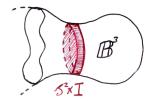


Figure 2: Hint: Attach 3-balls one by one.

Proposition 10.4. $\pi_1(T^{(2)}) = \pi_1(T^{(1)})/N$ where N is the normal subgroup generated by boundaries of two-simplices in T. Note that $\pi_1(T^{(1)})$ is a free group, as $T^{(1)}$ is a connected graph.

We now give several example computations.

Example 10.1. Consider Figure 3, where the faces are glued according to the arrows.

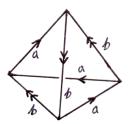


Figure 3: What is the fundamental group of this manifold?

Exercise 10.2. Check that this is a 3-manifold.

Step 1: Find a spanning tree for $T^{(1)}$. Here $T^{(1)}$ is the graph shown in Figure 4 and so the spanning tree is just the vertex.

Figure 4: $T^{(1)}$ in this case. The spanning tree is the single vertex circled in green.

Step 2: Give labels to the non-tree edges of $T^{(1)}$, as in Figure 4.

Step 3: Read off relations from faces of $T^{(2)}$. There is one relation per face in the quotient. Here we have $\langle a, b \mid a^2 = b, b^2 a = \mathbf{1} \rangle$.

Step 4: (optional) Use Tietze transformations to simplify:

$$\langle a, b \mid a^2 = b, \ b^2 a = \mathbf{1} \rangle \cong \langle a \mid (a^2)^2 a = \mathbf{1} \rangle \cong \mathbb{Z}/5\mathbb{Z}.$$

Example 10.2. (A non-Abelian example.) The *one-quarter turn space* Q is the quotient of the unit cube as shown in Figure 5:

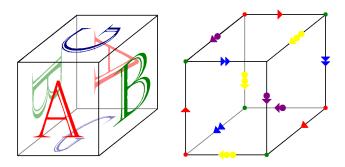


Figure 5: Two visualisations of how to glue faces to get Q.

Step 1: The 1-skeleton is the graph in Figure 6(a) with four edges and two vertices. We take the circled edge as the spanning tree.

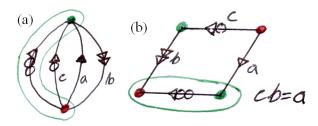


Figure 6: (a) The 1–skeleton and spanning tree. (b) After labelling the non-tree edges, read off relators from the faces. Edges of the spanning tree do not contribute to the relators.

Step 2: Label the non-tree edges with a, b, c.

Step 3: The three squares give relations and we have the following presentation

$$\pi_1(Q) = \langle a, b, c \mid a = cb, ba = c, abc = \mathbf{1} \rangle$$
.

Exercise 10.3. Recognize $\pi_1(Q)$. In particular, it is not Abelian.

Abelian groups

Definition 10.2. Suppose that Z is an Abelian group. Define $N := \{z \in Z : z \text{ is finite order}\}$. Then N < Z is called the *torsion subgroup* of Z.

Recall that $A \oplus B$ is the *direct product* of A and B.

Proposition 10.5. Suppose Z is a finitely generated Abelian group. Then there exist unique $k \in \mathbb{N}$ and N a finite group so that $Z \cong \mathbb{Z}^k \oplus N$.

Proof. This follows from the classification of finitely generated Abelian groups.

Definition 10.3. We call k the rank of Z, and use the notation rk(Z) = k.

Definition 10.4. Let G be any (finitely generated) group. The *commutator subgroup* of G is [G, G], the subgroup of G generated by all elements of the form $xyx^{-1}y^{-1}$ for $x, y \in G$.

$$[G,G] = \langle xyx^{-1}y^{-1} \mid x,y \in G \rangle \triangleleft G.$$

Definition 10.5. We define the Abelianization of G to be $G^{Ab} = G/[G, G]$.

Definition 10.6. We define the *first homology group* of M^3 to be $H_1(M, \mathbb{Z}) := [\pi_1(M)]^{Ab}$.

Example 10.3. Let $M^3 = N^3 \# P^3$. Then it follows by van Kampen's theorem that $\pi_1(M) \cong \pi_1(N) * \pi_1(P)$. Therefore $H_1(M) = H_1(N) \oplus H_1(P)$.

Exercise 10.4. Show that $(A * B)^{Ab} = A^{ab} \oplus B^{Ab}$.

Example 10.4. As in the last example we have that

$$\pi_1(\#_g S^2 \times S^1) = F_g \cong *_g \mathbb{Z},$$

so $H_1(\#_g S^2 \times S^1) = \mathbb{Z}^g$ has rank g. We denote $\#_g S^2 \times S^1$ by M_g .

Proposition 10.6. If M is connected, orientable, compact and $M \cong N \# M_g$, then $g \leq \text{rk}(H_1(M))$.

Note here that π_1 is finitely generated since M is compact.

Proof. We know that $H_1(M) = H_1(N) \oplus H_1(M_q)$, so:

$$rk(H_1(M)) = rk(H_1(N)) + g.$$

This is the first step in the existence proof for connect sum decompositions. For the next step, we need the following proposition:

Proposition 10.7. Suppose M is connected, orientable and compact. Then there exists a decomposition

$$M \cong \#_{i=1}^k N_i \# (\#_g S^2 \times S^1) \# (\#_n \mathbb{B}^3)$$

where each N_i is irreducible and not S^3 , \mathbb{B}^3 or $S^2 \times S^1$.

Proof.

Step 1: Let n be the number of components of ∂M that are 2–spheres. Let F be the frontier of a "tree-like" union of arcs and two-sphere boundary components, as shown in Figure 7. Form M - n(F) and cap off F^{\pm} by 3–balls. From now on we assume that n = 0.

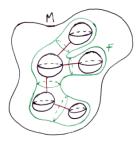


Figure 7: F is the frontier of a "tree-like" union of arcs and two-sphere boundary components.

Step 2: Proposition 10.6 gives us an upper bound on the number of summands of M homeomorphic to $S^2 \times S^1$. Thus from now on we may assume that g = 0. It follows that any 2-sphere embedded in M separates.

For Step 3, we require the following definitions.

Definition 10.7. We define $S_k^3 := \#_{i=1}^k \mathbb{B}^3$ and we call this a *ball with holes* or a *punctured sphere*. See Figure 8.

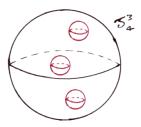


Figure 8: Here, n = 4.

Exercise 10.5. Show that $(\#_n \mathbb{B}^3) \cup_{S^2} (\#_m \mathbb{B}^3) \cong \#_{n+m-2} \mathbb{B}^3$.

Definition 10.8. We call $S \hookrightarrow M$ a *sphere system* if S is an embedding of a disjoint collection of 2–spheres; see Figure 9.

Definition 10.9. A system $S \hookrightarrow M$ is reduced if no component of M - n(S) is homeomorphic to a punctured sphere. The sphere system in Figure 9 is reduced.

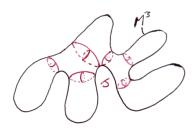


Figure 9: A reduced sphere system S in M.

Lectures 11 and 12

Step 3: If M is irreducible we are done. If $M \cong S^3$ we are done by Alexander's theorem. So suppose that M contains an essential 2-sphere. For the reminder of the proof, we fix a finite triangulation T of M. So our assumptions give us a reduced sphere system $S \subset M$.

Normalization Lemma. For any reduced sphere system $S \subset M$ there is a normal, reduced sphere system S' such that $|S'| \geq |S|$.

If we assume this lemma, we get the following proposition:

Proposition 11.8. (Existence) Let M be defined as above. Then $M \cong \#_{i=1}^n N_i$ such that all N_i are irreducible and $N_i \ncong S^3, \mathbb{B}^3$.

Proof. Let S_1 denote an essential 2–sphere, so $M = N_1 \#_{S_1} N_2$. If N_1 is homeomorphic to $\#_k \mathbb{B}^3$ for $k \geq 1$, then we have a contradiction. So, $S = \{S_1\}$ is a reduced sphere system. Let \overline{S} be a maximal sphere system (i.e. of maximal size). This exists because any normal reduced system has at most 20|T| components; this follows from the Haken-Kneser finiteness and the normalization lemma. Since \overline{S} is maximal, if we cut M along \overline{S} and cap off with 3–balls the resulting manifolds $\{N_i\}$ are all irreducible.

To prove the normalization lemma, we must normalize the given system S

Proof of Normalization Lemma. Isotope S to be transverse to $T^{(k)}$ for k=0,1,2, i.e. $S\cap T^{(0)}=\varnothing,\ |S\cap T^{(1)}|=:w(S)$ (the weight of S) is finite, $S\cap T^{(1)}$ is transverse and $S\cap\partial\Delta_i$ is a finite collection of simple closed curves; see Figure 10. We alternatingly apply surgery and the baseball move.

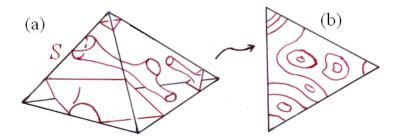


Figure 10: (a) The sphere system can look unpleasant in the triangulation. (b) A possible picture of $S \cap T^{(2)}$.

Surgery: Suppose $(D, \partial D) \subset (M, S)$ is a surgery disk, i.e. $D \cap S = \partial D$. Suppose $D \cap S \subset F$ is a component of S. As before, define $F_D = F - n(D) \cup D^+ \cup D^-$. Define $S_D = (S - F) \cup F_D$. Notice that ∂D separates F, so $F_D = F^+ \cup F^-$. See Figure 11.

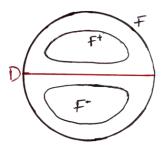


Figure 11: Notice that ∂D separates F, so $F_D = F^+ \cup F^-$.

Let $X,Y\subset M-n(S)$ be the components adjacent to F and suppose $D\cap X\neq\emptyset$. So let $X^+\cup X_0\cup X^-=X-n(F_D)$ where X_0 meets D and X^\pm are adjacent to F^\pm , respectively. See Figure 12.

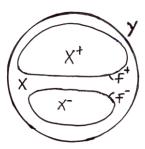


Figure 12: $X^+ \cup X_0 \cup X^- = X - n(F_D)$, where X_0 meets D, and X^\pm are adjacent to F^\pm .

Note that $X_0 \cong \#_3 \mathbb{B}^3$. Since we assumed S is a reduced sphere system, we find Y is not a punctured sphere.

Exercise 11.6. $Y \cup_F X_0$ is not a punctured sphere.

Claim. At most one of X^+, X^- is a punctured sphere.

Proof. If both are punctured spheres then so is $X = X^+ \cup_{F^+} X_0 \cup_{F^-} X^-$, a contradiction. This proves the claim.

Let S'=S-F thus either $S^+=S'\cup F^+$ or $S^-=S'\cup F^-$ or $S_D=S'\cup F_D$ is a reduced system.

Using surgery: For every tetrahedron $\Delta \in T^{(3)}$, the surface S meets $\partial \Delta$ is a collection of simple closed curves. See Figure 13 for a possible intersection pattern.

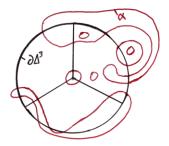


Figure 13: A possible intersection of S with the boundary of a tetrahedron.

For every simple closed curve $\alpha \subset \partial \Delta \cap S$ we do the following. Pick a disk $D \subset \partial \Delta$ bounded by α . Isotope D into Δ (∂D stays in S), as in Figure 14.

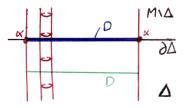


Figure 14: Isotope D into Δ .

Use D (in Δ) to surger all curves of $S \cap D$, innermost first. When this is done, $S \cap \Delta$ is a collection of disks (for all Δ).

Claim. After surgery, for all Δ and for all simple closed curves $\alpha \subset \partial \Delta \cap S$, α meets $\Delta^{(1)}$.

Proof. Suppose α has weight 0 and $\alpha \subset f \subset \Delta^{(2)}$ a face. We surgered along both D^{\pm} , so the component sphere containing α bounds a ball as in Figure 15.

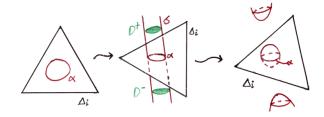


Figure 15: We surgered along both $D^{\pm},$ so the component sphere containing α bounds a ball.

But surgery deletes trivial spheres. This proves the claim. $\hfill\Box$

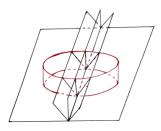


Figure 16: The intersection of S with the two-skeleton; outside of Δ it can be complicated.