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Lecture 13

Proof. We complete the proof of the existence of connect sum decomposition.

Procedure 2: Baseball move. We perform this move after surgery along all
curves of S ∩ ∂∆ for all ∆3 ∈ T . Suppose α is a simple closed curve of S ∩ ∂∆,
where ∆3 ∈ T . So α bounds disks D0 and D1 in ∂∆. Suppose that there is an
edge e ∈ ∆(1) with |α ∩ e| ≥ 2, as illustrated in Figure 1.

Exercise 13.1. Without loss of generality, there is a component d ⊂ D0 ∩ e
such that d ∩∆(0) = ∅, as in Figure 1.

Figure 1: α bounds two disks D0 and D1, and there is an edge e ∈ ∆(1) such
that |α ∩ e| = 2.

Now let D = D0. By an innermost arc argument we may assume that
d ∩ S = ∂d. Let D′ ⊂ S ∩∆ be the disk bounded by α, as in Figure 2.

Figure 2: D′ is the disk bounded by α.
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Since D ∪D′ ∼= S2, they cobound a three-ball, B, by Alexander’s theorem,
and so we may choose an embedded arc d′ ⊂ D′ so that d and d′ cobound a
disk E ⊂ B, as in Figure 3.

Figure 3: The arcs d and d′ cobound a disk E ⊂ B.

Let C be the 3–ball obtained from N(E) by cutting along S and retaining
the component containing E; see figure 4.

Figure 4: A picture of N(E) ∩ S.

Write ∂−C = C ∩ S and ∂+C = ∂C − ∂−C. The baseball curve is the
common boundary ∂∂+C = ∂∂−C, as in Figure 5.

Figure 5: The baseball curve is the common boundary ∂∂+C = ∂∂−C.

Since C is a 3–ball, there is an isotopy, called the baseball move, taking ∂−C
to ∂+C; see Figures 6(a) or (b). This gives an isotopy of S to S′. Notice that
w(S′) = w(S)− 2.
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Figure 6: Two visualisations of the baseball move.

So alternate between surgery along all curves and single baseball moves. As w(S)
is decreasing, this process terminates with S in normal position. If w(S) = 0
then S = ∅ and this is a contradiction as surgery never decreases the initial
number of essential spheres. So this completes the proof of existence.

Following Hatcher, for uniqueness we use lemma 13.1.

Definition 13.1. If M is a 3–manifold, define cM to be M with all S2 ⊂ ∂M
capped off by 3–balls, and discarding 3–sphere components.

Lemma 13.1. Suppose that S ⊂M is a sphere system (not necessarily reduced)
so that:

ÚM − n(S) =
kG

i=1

Ni

is a disjoint union of irreducible manifolds. Suppose that (D, ∂D) ⊂ (M,S) is
a surgery disk. Then:

ÛM − n(SD) =
kG

i=1

Ni.

Exercise 13.2. Prove this lemma. For a hint, see Figure 7.

Figure 7: Hint for Exercise 13.2.
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So we may now complete the proof of uniqueness of prime decomposition.

Proof of uniqueness. Suppose S and T are sphere systems so that:

M − n(S) =
kG

i=1

Pi

and

N − n(T ) =
lG

j=1

Qj

where the Pi and Qj are irreducible. Now, if S ∩ T = ∅ we have:

G
Pi =
ÛG
Pi − n(T )

= ÛM − n(S ∪ T )

=
ÛG
Qj − n(S) =

G
Qj

On the other hand, if S∩T 6= ∅ then surger S along an innermost disk of T and
apply Lemma 13.1. Finally, ifM ∼= N#

�
#lS

2 × S1
�

andM ∼= N#
�
#kS

2 × S1
�

then:
rank(H1(N)) + l = rank(H1(M)) = rank(H1(N)) + k

and so l = k.

Lecture 14

Exercise 14.3. Suppose that (M,T ) is orientable, compact, connected, irre-
ducible and triangulated. Suppose F ⊂ M is embedded, closed (∂F = ∅,
compact) and orientable. Show that if G is incompressible, it is isotopic to a
normal surface.

Definition 14.2. Say F properly embedded in M is boundary parallel if there
is an isotopy (relative to ∂F ) pusing F into ∂M . More precisely, there is an
isotopy H : F × I →M such that:

(i) Ht is an embedding of F into M for all t < 1.

(ii) H1 is an embedding of F into ∂M .

(iii) H0 = Id.

(iv) Ht|∂F = Id.

Equivalently M−n(F ) has a component X ∼= F×I with F×{0} = F+ ⊂ N(F )
and F × {1} ⊆ ∂M . See Figure 8.
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Figure 8: F is boundary parallel to M .

Example 14.1. (See Figure 9)

(i) The equatorial disk B2 ⊂ B3 is boundary parallel.

(ii) Take K ⊂ T = ∂(D2 × S1). Let N(K) be a closed neighbourhood in
D2 × S1. Let G = N(K) ∩ T . So G ⊂ T = ∂(D2 × S1). Let F =
∂N(K)−G, so F is boundary parallel; in fact parallel to G.

Figure 9: (a) Example (i). (b) Example (ii). (c) Cross section for Example (ii).

Note. F in example (ii) above is boundary parallel in essentially a unique way,
unlike B2 ⊂ B3, or the following. Take B1×S1 ⊆ D2×S1. Then this is boundary
parallel in two ways; see Figure 10.

Figure 10: (b) is a cross section of (a), and B1 × S1 can be isotoped either up
or down into T2 = ∂

�
D2 × S1
�
.

Example 14.2. M2 ⊆ D2 × S1 is not boundary parallel; see Figure 11.
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Figure 11: M2 is not boundary parallel in D2 × S1.

Definition 14.3. A torus T ⊂ M is essential if it is incompressible and not
boundary parallel.

Definition 14.4. Suppose M is irreducible, orientable, compact and connected.
Then the manifold M is toroidal if there exists an essential torus T ⊂M . M is
atoroidal if there are no essential tori embedded in M .

Example 14.3. Suppose K ⊂ S3 is a knot. Define the knot exterior XK :=
S3 − n(K). If K = L # L′ is a non-trivial connect sum of knots, then XK is
toroidal.

Figure 12: (a) n(K). (b) An essential torus in XK .

As shown in the previous lecture, when dealing with essential 2–spheres, we
cut and cap off with 3–balls. However, there is no canonical way to cap off
T2 ⊂ ∂M . So we must live with the possibility of incompressible tori, but at
least we may eliminate essential tori.

Definition 14.5. Fix K, a knot in S3, called the companion knot. Fix L ⊂
D2 × S1, the pattern knot. Fix a homeomorphism ϕ : D2 × S1 → N(K). Then
ϕ(L) ⊂ S3 is a satellite knot with pattern L and companion K. See Figure 13.

Example 14.4. All non-trivial connect sums are satellite knots.

Remark. If K is not the unknot and L ⊂ D2 × S1 is disk busting (for all
compressing disks D ⊂ D2×S1, |L∩D| ≥ 1, and L is not isotopic to {0}×S1),
then Xϕ(L) is toroidal.
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Figure 13: (a) L is the pattern knot, (b) K is the companion knot and (c) ϕ(L)
is the satelite knot.

Theorem 14.2 (Thurston). Every knot K ⊂ S3 other than the unknot is either
a satellite knot, a torus knot or a hyperbolic knot, as respectively XK is toroidal,
XK is atoroidal but cylindrical, or XK is atoroidal and acylindrical.

Exercise 14.4. Show that XK is irreducible.

Example 14.5. S3 is atoroidal, but T3 is not; see Figure 14.

Figure 14: T3 contains T2 as an essential torus, and so is toroidal.

Lecture 15

Exercise 15.5. Suppose F ⊂ M is properly embedded and suppose that
i∗ : π1(F )→ π1(M) is injective. Show that F is incompressible (i.e., all surgery
disks are trivial).

The final part of the course will be devoted to proving a partial converse to
Exercise 15.5, via the loop theorem, the disk theorem and Dehn’s lemma. An
application of this converse will give us the following example:

Example 15.6. A knot K ⊂ S3 is isotopic to a round circle (that is K is
unknotted) if and only if π1(XK) ∼= Z.

Definition 15.6. A torus system is a finite union of disjoint, non-parallel,
essential tori.
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Proposition 15.3 (Corollary 1.8 in Hatcher). Suppose that M is compact,
connected, orientable and irreducible. Then there is a torus system S ⊂ M
(where we allow S = ∅), so that all components of M − n(S) are atoroidal.

Proof. If M is atoroidal then take S = ∅. Otherwise, fix a triangulation T of
M and suppose that F ⊂M is an essential torus. So S = {F} is a torus system.
We now induct on |S|. By Exercise 14.3 we may normalize S. By Haken-Kneser
finiteness we find that |S| ≤ 20|T |, so if there exists a component N ⊆M−n(S)
which is toroidal then we find F ′ ⊂ N an essential torus. So F ′ is not parallel to
any component of S. Let S′ = S ∪ {F ′}. Then S′ is again a torus system.

Remark. The final step uses Exercise 4.5 in Exercise Sheet 4.

Example 15.7. Suppose ϕ : F → F is a homeomorphism of a surface F . Define
Mϕ = F × I/(x, 1) ∼ (ϕ(x), 0). Then Mϕ is a surface bundle over S1 via
ρ : Mϕ → S1, where ρ : (x, t) 7→ t ∈ R/Z; see Figure 15.

Figure 15: Mϕ is a T2–bundle over S1.

Exercise 15.6. Show that every fibre Tt = ρ−1(t) is incompressible (in fact
π1–injective) in Mϕ.

Note. If F = T ∼= T2, and T ⊂Mϕ is a fibre, then Mϕ − n(T ) ∼= T × I. So we
cannot avoid sometimes having a product component after cutting.

Remark. We have that T3 is the torus bundle MId in the above notation.

We now discuss lens spaces. Take S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 2}.
Let y be the loop {|w| = 2} and x be the loop {|z| = 2}, oriented as shown in
Figure 16.

Figure 16: The great circles {z = 0} and {w = 0} in S3 ⊂ C2 with this
orientation are together homeomorphic to the right Hopf link.
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Then define:

V = {(z, w) ∈ S3 : |w| ≤ 1},
W = {(z, w) ∈ S3 : |z| ≤ 1},
T = V ∩W

= {(z, w) ∈ S3 : |z| = |w| = 1} ∼= T2.

Recall that D×S1 is a solid torus. We refer to any curve of the form ∂D×{z} ⊂
D × S1 as a meridian. Now, as indicated in Figure 17 we take µ and λ to be
generators of π1(T ). Thus µ and λ are meridians of the solid tori V and W ,
respectively. We give µ and λ the orientations shown in Figure 17.

Figure 17: The curves µ and λ are oriented so that µ, λ and the outward normal
for V form a right-handed frame.

Definition 15.7. Write Zp = Z/pZ = {α ∈ C : αp = 1} for p 6= 0, and fix
q ∈ Z with gcd{q, p} = 1. This acts on S3 via:

α · (z, w) = (αz, αpw).

Definition 15.8. Define L(p, q) = Zp\S3, the (p, q)–lens space.

Exercise 15.7. L(p, q) is an orientable 3–manifold.

Example 15.8. We have L(1, 0) = S3.

Exercise 15.8. Show that L(2, 1) ∼= P 3.

Proposition 15.4. Suppose V,W ∼= D2 × S1 and ϕ : ∂W → ∂V is a homeo-
morphism. Show that M = V ∪ϕ W is either a lens space or is S1 × S2.

Note. We have π1(L(p, q)) ∼= Zp. Thus if L(p′, q′) ∼= L(p, q) then p′ = p.

Exercise 15.9. Show that if q′ = ±q±1 modulo p, then L(p, q′) ∼= L(p, q).

Remark. The converse holds, but is much harder to prove (see Brody 1960).

Remark. Whitehead (1941) showed that L(p, q) w L(p, q′) (the spaces are
homotopy equivalent) if and only if qq′ = ±k2 modulo p for some k.

Example 15.9. We have L(7, 1) w L(7, 2), but these spaces are not homeo-
morphic.
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