MA4J2 Three Manifolds

Lectured by Dr Saul Schleimer Typeset by Matthew Pressland Assisted by Anna Lena Winstel and David Kitson

Lecture 13

Proof. We complete the proof of the existence of connect sum decomposition.

Procedure 2: Baseball move. We perform this move after surgery along all curves of $S \cap \partial \Delta$ for all $\Delta^3 \in T$. Suppose α is a simple closed curve of $S \cap \partial \Delta$, where $\Delta^3 \in T$. So α bounds disks D_0 and D_1 in $\partial \Delta$. Suppose that there is an edge $e \in \Delta^{(1)}$ with $|\alpha \cap e| \geq 2$, as illustrated in Figure 1.

Exercise 13.1. Without loss of generality, there is a component $d \subset D_0 \cap e$ such that $d \cap \Delta^{(0)} = \emptyset$, as in Figure 1.

Figure 1: α bounds two disks D_0 and D_1 , and there is an edge $e \in \Delta^{(1)}$ such that $|\alpha \cap e| = 2$.

Now let $D = D_0$. By an innermost arc argument we may assume that $d \cap S = \partial d$. Let $D' \subset S \cap \Delta$ be the disk bounded by α , as in Figure 2.

Figure 2: D' is the disk bounded by α .

Since $D \cup D' \cong S^2$, they cobound a three-ball, B, by Alexander's theorem, and so we may choose an embedded arc $d' \subset D'$ so that d and d' cobound a disk $E \subset B$, as in Figure 3.

Figure 3: The arcs d and d' cobound a disk $E \subset B$.

Let C be the 3-ball obtained from N(E) by cutting along S and retaining the component containing E; see figure 4.

Figure 4: A picture of $N(E) \cap S$.

Write $\partial_{-}C = C \cap S$ and $\partial_{+}C = \overline{\partial C - \partial_{-}C}$. The baseball curve is the common boundary $\partial_{+}C = \partial_{-}C$, as in Figure 5.

Figure 5: The baseball curve is the common boundary $\partial \partial_+ C = \partial \partial_- C$.

Since C is a 3-ball, there is an isotopy, called the *baseball move*, taking $\partial_{-}C$ to $\partial_{+}C$; see Figures 6(a) or (b). This gives an isotopy of S to S'. Notice that w(S') = w(S) - 2.

Figure 6: Two visualisations of the baseball move.

So alternate between surgery along all curves and single baseball moves. As w(S) is decreasing, this process terminates with S in normal position. If w(S) = 0 then $S = \emptyset$ and this is a contradiction as surgery never decreases the initial number of essential spheres. So this completes the proof of existence.

Following Hatcher, for uniqueness we use lemma 13.1.

Definition 13.1. If M is a 3-manifold, define \widehat{M} to be M with all $S^2 \subset \partial M$ capped off by 3-balls, and discarding 3-sphere components.

Lemma 13.1. Suppose that $S \subset M$ is a sphere system (not necessarily reduced) so that:

$$\widehat{M - n(S)} = \bigsqcup_{i=1}^{k} N_i$$

is a disjoint union of irreducible manifolds. Suppose that $(D, \partial D) \subset (M, S)$ is a surgery disk. Then:

$$\widehat{M - n(S_D)} = \bigsqcup_{i=1}^k N_i.$$

Exercise 13.2. Prove this lemma. For a hint, see Figure 7.

Figure 7: Hint for Exercise 13.2.

So we may now complete the proof of uniqueness of prime decomposition.

Proof of uniqueness. Suppose S and T are sphere systems so that:

$$M - n(S) = \bigsqcup_{i=1}^{k} P_i$$

and

$$N - n(T) = \bigsqcup_{j=1}^{l} Q_j$$

where the P_i and Q_j are irreducible. Now, if $S \cap T = \emptyset$ we have:

$$P_{i} = \square P_{i} - n(T)$$
$$= \widehat{M - n(S \cup T)}$$
$$= \square Q_{j} - n(S) = \square Q_{j}$$

On the other hand, if $S \cap T \neq \emptyset$ then surger S along an innermost disk of T and apply Lemma 13.1. Finally, if $M \cong N \# (\#_l S^2 \times S^1)$ and $M \cong N \# (\#_k S^2 \times S^1)$ then:

$$\operatorname{rank}(H_1(N)) + l = \operatorname{rank}(H_1(M)) = \operatorname{rank}(H_1(N)) + k$$

and so l = k.

Lecture 14

Exercise 14.3. Suppose that (M,T) is orientable, compact, connected, irreducible and triangulated. Suppose $F \subset M$ is embedded, closed ($\partial F = \emptyset$, compact) and orientable. Show that if G is incompressible, it is isotopic to a normal surface.

Definition 14.2. Say F properly embedded in M is *boundary parallel* if there is an isotopy (relative to ∂F) pusing F into ∂M . More precisely, there is an isotopy $H: F \times I \to M$ such that:

- (i) H_t is an embedding of F into M for all t < 1.
- (ii) H_1 is an embedding of F into ∂M .
- (iii) $H_0 = \text{Id.}$
- (iv) $H_t | \partial F = \text{Id.}$

Equivalently M - n(F) has a component $X \cong F \times I$ with $F \times \{0\} = F^+ \subset N(F)$ and $F \times \{1\} \subseteq \partial M$. See Figure 8.

Figure 8: F is boundary parallel to M.

Example 14.1. (See Figure 9)

- (i) The equatorial disk $\mathbb{B}^2 \subset \mathbb{B}^3$ is boundary parallel.
- (ii) Take $K \subset T = \partial(\mathbb{D}^2 \times S^1)$. Let N(K) be a closed neighbourhood in $\underline{\mathbb{D}^2 \times S^1}$. Let $G = N(K) \cap T$. So $G \subset T = \partial(\mathbb{D}^2 \times S^1)$. Let $F = \overline{\partial N(K) G}$, so F is boundary parallel; in fact parallel to G.

Figure 9: (a) Example (i). (b) Example (ii). (c) Cross section for Example (ii).

Note. F in example (ii) above is boundary parallel in essentially a unique way, unlike $\mathbb{B}^2 \subset \mathbb{B}^3$, or the following. Take $\mathbb{B}^1 \times S^1 \subseteq \mathbb{D}^2 \times S^1$. Then this is boundary parallel in two ways; see Figure 10.

Figure 10: (b) is a cross section of (a), and $\mathbb{B}^1 \times S^1$ can be isotoped either up or down into $\mathbb{T}^2 = \partial (\mathbb{D}^2 \times S^1)$.

Example 14.2. $\mathbb{M}^2 \subseteq \mathbb{D}^2 \times S^1$ is not boundary parallel; see Figure 11.

Figure 11: \mathbb{M}^2 is not boundary parallel in $\mathbb{D}^2 \times S^1$.

Definition 14.3. A torus $T \subset M$ is essential if it is incompressible and not boundary parallel.

Definition 14.4. Suppose M is irreducible, orientable, compact and connected. Then the manifold M is *toroidal* if there exists an essential torus $T \subset M$. M is *atoroidal* if there are no essential tori embedded in M.

Example 14.3. Suppose $K \subset S^3$ is a knot. Define the *knot exterior* $X_K := S^3 - n(K)$. If K = L # L' is a non-trivial connect sum of knots, then X_K is toroidal.

Figure 12: (a) n(K). (b) An essential torus in X_K .

As shown in the previous lecture, when dealing with essential 2–spheres, we cut and cap off with 3–balls. However, there is no canonical way to cap off $\mathbb{T}^2 \subset \partial M$. So we must live with the possibility of incompressible tori, but at least we may eliminate essential tori.

Definition 14.5. Fix K, a knot in S^3 , called the *companion knot*. Fix $L \subset \mathbb{D}^2 \times S^1$, the *pattern knot*. Fix a homeomorphism $\varphi \colon \mathbb{D}^2 \times S^1 \to N(K)$. Then $\varphi(L) \subset S^3$ is a *satellite knot* with pattern L and companion K. See Figure 13.

Example 14.4. All non-trivial connect sums are satellite knots.

Remark. If K is not the unknot and $L \subset \mathbb{D}^2 \times S^1$ is disk busting (for all compressing disks $D \subset \mathbb{D}^2 \times S^1$, $|L \cap D| \ge 1$, and L is not isotopic to $\{0\} \times S^1$), then $X_{\varphi(L)}$ is toroidal.

Figure 13: (a) L is the pattern knot, (b) K is the companion knot and (c) $\varphi(L)$ is the satelite knot.

Theorem 14.2 (Thurston). Every knot $K \subset S^3$ other than the unknot is either a satellite knot, a torus knot or a hyperbolic knot, as respectively X_K is toroidal, X_K is atoroidal but cylindrical, or X_K is atoroidal and acylindrical.

Exercise 14.4. Show that X_K is irreducible.

Example 14.5. S^3 is atoroidal, but \mathbb{T}^3 is not; see Figure 14.

Figure 14: \mathbb{T}^3 contains \mathbb{T}^2 as an essential torus, and so is toroidal.

Lecture 15

Exercise 15.5. Suppose $F \subset M$ is properly embedded and suppose that $i_*: \pi_1(F) \to \pi_1(M)$ is injective. Show that F is incompressible (i.e., all surgery disks are trivial).

The final part of the course will be devoted to proving a partial converse to Exercise 15.5, via the loop theorem, the disk theorem and Dehn's lemma. An application of this converse will give us the following example:

Example 15.6. A knot $K \subset S^3$ is isotopic to a round circle (that is K is unknotted) if and only if $\pi_1(X_K) \cong \mathbb{Z}$.

Definition 15.6. A *torus system* is a finite union of disjoint, non-parallel, essential tori.

Proposition 15.3 (Corollary 1.8 in Hatcher). Suppose that M is compact, connected, orientable and irreducible. Then there is a torus system $S \subset M$ (where we allow $S = \emptyset$), so that all components of M - n(S) are atoroidal.

Proof. If M is atoroidal then take $S = \emptyset$. Otherwise, fix a triangulation T of M and suppose that $F \subset M$ is an essential torus. So $S = \{F\}$ is a torus system. We now induct on |S|. By Exercise 14.3 we may normalize S. By Haken-Kneser finiteness we find that $|S| \leq 20|T|$, so if there exists a component $N \subseteq M - n(S)$ which is toroidal then we find $F' \subset N$ an essential torus. So F' is not parallel to any component of S. Let $S' = S \cup \{F'\}$. Then S' is again a torus system. \Box

Remark. The final step uses Exercise 4.5 in Exercise Sheet 4.

Example 15.7. Suppose $\varphi: F \to F$ is a homeomorphism of a surface F. Define $M_{\varphi} = F \times I/(x,1) \sim (\varphi(x),0)$. Then M_{φ} is a surface bundle over S^1 via $\rho: M_{\varphi} \to S^1$, where $\rho: (x,t) \mapsto t \in \mathbb{R}/\mathbb{Z}$; see Figure 15.

Figure 15: M_{φ} is a \mathbb{T}^2 -bundle over S^1 .

Exercise 15.6. Show that every fibre $T_t = \rho^{-1}(t)$ is incompressible (in fact π_1 -injective) in M_{φ} .

Note. If $F = T \cong \mathbb{T}^2$, and $T \subset M_{\varphi}$ is a fibre, then $M_{\varphi} - n(T) \cong T \times I$. So we cannot avoid sometimes having a product component after cutting.

Remark. We have that \mathbb{T}^3 is the torus bundle M_{Id} in the above notation.

We now discuss lens spaces. Take $S^3 = \{(z, w) \in \mathbb{C}^2 : |z|^2 + |w|^2 = 2\}$. Let y be the loop $\{|w| = 2\}$ and x be the loop $\{|z| = 2\}$, oriented as shown in Figure 16.

Figure 16: The great circles $\{z = 0\}$ and $\{w = 0\}$ in $S^3 \subset \mathbb{C}^2$ with this orientation are together homeomorphic to the right Hopf link.

Then define:

$$V = \{(z, w) \in S^3 : |w| \le 1\},\$$

$$W = \{(z, w) \in S^3 : |z| \le 1\},\$$

$$T = V \cap W$$

$$= \{(z, w) \in S^3 : |z| = |w| = 1\} \cong \mathbb{T}^2$$

Recall that $D \times S^1$ is a *solid torus*. We refer to any curve of the form $\partial D \times \{z\} \subset D \times S^1$ as a *meridian*. Now, as indicated in Figure 17 we take μ and λ to be generators of $\pi_1(T)$. Thus μ and λ are meridians of the solid tori V and W, respectively. We give μ and λ the orientations shown in Figure 17.

Figure 17: The curves μ and λ are oriented so that μ , λ and the outward normal for V form a right-handed frame.

Definition 15.7. Write $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z} = \{\alpha \in \mathbb{C} : \alpha^p = 1\}$ for $p \neq 0$, and fix $q \in \mathbb{Z}$ with $gcd\{q, p\} = 1$. This acts on S^3 via:

$$\alpha \cdot (z, w) = (\alpha z, \alpha^p w).$$

Definition 15.8. Define $L(p,q) = \mathbb{Z}_p \setminus S^3$, the (p,q)-lens space.

Exercise 15.7. L(p,q) is an orientable 3-manifold.

Example 15.8. We have $L(1,0) = S^3$.

Exercise 15.8. Show that $L(2,1) \cong P^3$.

Proposition 15.4. Suppose $V, W \cong \mathbb{D}^2 \times S^1$ and $\varphi \colon \partial W \to \partial V$ is a homeomorphism. Show that $M = V \cup_{\varphi} W$ is either a lens space or is $S^1 \times S^2$.

Note. We have $\pi_1(L(p,q)) \cong \mathbb{Z}_p$. Thus if $L(p',q') \cong L(p,q)$ then p' = p.

Exercise 15.9. Show that if $q' = \pm q^{\pm 1}$ modulo p, then $L(p,q') \cong L(p,q)$.

Remark. The converse holds, but is much harder to prove (see Brody 1960).

Remark. Whitehead (1941) showed that $L(p,q) \simeq L(p,q')$ (the spaces are homotopy equivalent) if and only if $qq' = \pm k^2$ modulo p for some k.

Example 15.9. We have $L(7,1) \simeq L(7,2)$, but these spaces are not homeomorphic.