MA4J2 Three Manifolds

Lectured by Dr Saul Schleimer Typeset by Anna Lena Winstel Assisted by Matthew Pressland and David Kitson

today

Lecture 16

For lens spaces, we have the following definitions:

- The quotient space $\mathbb{Z}_p \backslash S^3$.
- The gluing $V \cup_{\varphi} W$, the union of solid tori, which is either a lens space or $S^2 \times S^1$.
- The following construction: let $B = \{(z,t) \in \mathbb{C} \times \mathbb{R} : |z|^2 + t^2 \leq 1\}$, a 3-ball. Let D^{\pm} be the upper (respectively lower) hemisphere of ∂B , as in Figure 1.

Figure 1: D^{\pm} are the upper and lower hemispheres of ∂B .

Fix $\alpha=\exp(2\pi i/p)$ and glue D^- to D^+ by $\varphi\colon D^-\longrightarrow D^+$, where $\varphi(z,t)=(\alpha^qz,-t).$ See Figure 2.

Figure 2: The lower hemisphere is glued to the upper by a $2\pi \cdot q/p$ twist.

Notice that, as Figure 2 indicates, there is a nice triangulation of B by a collection of p tetrahedra, all sharing the z-axis as an edge. Notice also that a neighborhood of the midpoint of any edge is a half-ball

$$B_{+}^{3} \cong \{(x, y, z): z \ge 0, x^{2} + y^{2} + z^{2} \le 1\}$$

and p copies of these are glued, each to the next. So "geometrically", an edge has $p\pi$ dihedral angle which is $(p-2)\pi$ too much. So we consider a lens with dihedral angle $2\pi/p$ at the equator, as in Figure 3.

Figure 3: A lens with dihedral angle $2\pi/p$ at the equator (here, p=5).

Now we can glue and get the right amount of dihedral angle. More precisely, the lens should live in S^3 and be cut out by great hemispheres, each meeting the next at angle $2\pi/p$. In Figure 4, you can see the lenses for p=10. Glue pairs of these together to get lenses for p=5.

Figure 4: 10 copies of the lens tile S^3 .

Exercise 16.1. Check that the three definitions agree.

Recall that we defined the meridian and longitude μ, λ for the torus $T = V \cap W \subset S^3$. See Figure 5.

Definition 16.1. If $K = s\mu + r\lambda$ then the *slope* of K is r/s.

Let $K = s\mu + r\lambda \in \pi_1(T)$, a simple closed curve. In Figure 6 for example, $K = 3\mu + 2\lambda$ has slope 2/3 in T.

Notation. For $\alpha, \beta \in \pi_1(T)$ we define $\alpha \cdot \beta$ to be the signed intersection number. So

$$\begin{array}{ll} \mu \cdot \mu = 0 & \mu \cdot \lambda = +1 \\ \lambda \cdot \mu = -1 & \lambda \cdot \lambda = 0 \end{array}$$

and thus $\mu \cdot K = r$ and $K \cdot \lambda = s$.

Figure 5: The torus T with meridian μ and longitude λ . Note that the orientation of μ , that of λ , and the outward normal to V, in that order, obey the right-hand rule.

Figure 6: The right handed trefoil knot K has slope 2/3. (a) K as seen in the torus T, and (b) K as seen in $\mathbb{R}^2/\mathbb{Z}^2 \cong T$.

Definition 16.2. Suppose $r, s \in \mathbb{Z}$ are coprime, with |r|, |s| > 1. We call $K = r\lambda + s\mu \subset T \subset S^3$ the (r, s)-torus knot. Then we define $X_K := S^3 - n(K)$, the knot exterior. Moreover, we define $V_K := V - n(K)$, $W_K := W - n(K)$ and $A = T_K = T - n(K)$.

In Figure 7, z is the core curve of $A = V_K \cap W_K$.

Figure 7: The cross-sections of V_K and W_K . The loop z is the core curve of $A = V_K \cap W_K$, and the loops x and y are the generators of $\pi_1(V_k)$ and $\pi_1(W_k)$ respectively.

Recall that the inclusions $i:A\hookrightarrow V_K$ and $j:A\hookrightarrow W_K$ induce maps i_* and j_* giving the following diagram:

$$\pi_1(A) = \langle z \rangle$$

$$\pi_1(V_k) = \langle x \rangle$$

$$\pi_1(W_k) = \langle y \rangle$$

Exercise 16.2. Show that $i_*(z) = x^r$ and $j_*(z) = y^s$ hence i_* and j_* are injective, where x and y are the loops shown in Figure 7.

By Seifert-van Kampen, assuming that $r, s \neq 0$, we get the following pushout where the lower maps are again inclusions:

Via group theory, one can show that $\Gamma_{r,s} \cong \Gamma_{p,q}$ if and only if $\{|p|, |q|\} = \{|r|, |s|\}.$

Lecture 17

Aside. Note that

- $SO(2) \cong S^1$,
- $SO(3) \cong \mathbb{P}^3$ and
- $SL(2,\mathbb{R}) \cong \operatorname{int}(\mathbb{D} \times S^1) \cong \mathbb{R}^2 \times S^1$, the latter is not an isomorphism of groups.

Remark. We now have the following remarkable fact. Let $K \subset S^3$ be the trefoil knot and define $Y_K = S^3 - K$ be the *knot complement*, an open three-manifold. Then Y_K is homeomorphic to $SL(2, \mathbb{R})/SL(2, \mathbb{Z})$.

For the following we assume that K is not the unknot, i.e. $|p|, |q| \ge 2$.

Theorem 17.1. Suppose $K = K_{p,q}$ is the (p,q)-torus knot, then the annulus A = T - n(K) is the unique essential annulus in X_K , up to isotopy.

We will prove this later in the course.

Corollary 17.1. Define $X_{p,q} = X_K$, where $K = K_{p,q}$. Then $X_{p,q} \cong X_{r,s}$ if and only if $\{|p|, |q|\} = \{|r|, |s|\}$.

Non-uniqueness of torus decompositions

Now we closely follow Hatcher. Let $V_i \cong \mathbb{D} \times S^1$, i = 1, 2, 3, 4. Let $A_i \subset \partial V_i$ be an embedded annulus and suppose A_i winds q_i times about V_i with $q_i \geq 2$; for examples see Figure 8.

Figure 8: Two examples of a winding annulus; in (a) $q_1 = 2$ and in (b) $q_2 = 3$.

Another way to define q_i is the following: Let α_i be a core curve of A_i and define q_i via $q_i = |\alpha_i \cdot \partial D_i|$. Let $A_i' = \overline{\partial V_i - A_i}$ and pick $\varphi \colon A_i' \longrightarrow A_{i+1}$ where we take the indices modulo 4. Let $M = \sqcup V_i/\varphi_i$; see Figure 9(a). Let B_i denote the image of A_i in M. Now we define $M_i = V_i \cup_{\varphi_i} V_{i+1}$. Let $T_1 = B_1 \cup B_3$ and $T_2 = B_2 \cup B_4$. Thus $M = M_1 \cup_{T_1} M_3 = M_2 \cup_{T_2} M_4$.

Figure 9: (a) A schematic of M. B_i is the image of A_i in M. (b) and (c) are schematics of two different torus decompositions.

Finally, we claim that $B_1 \cup B_3$ and $B_2 \cup B_4$ are incompressible tori in M. If we now choose the q_i to all be distinct and coprime then, for i = 1, 2, 3, 4, then manifold M_i is a torus knot exterior. So we have, for these choices of q_i , that M_1 is not homeomorphic to M_2 or M_4 and M_3 is not homeomorphic to M_2 or M_4 . Thus the torus decompositions T_1 and T_2 are different; see Figures 9(b) and (c).

Remark (17.2). This requires the following facts. If $X_{p,q} = S^3 - n(K_{p,q})$, then

- $\partial X_{p,q}$ is incompressible,
- $X_{p,q}$ is atoroidal and
- Theorem 17.1.

We will prove these facts later. To do so, and so to understand the non-uniqueness of torus decompositions, we must first understand *Seifert fibred spaces*.

Fibred solid tori

Fibre $D \times I$ by intervals of the form $\{x\} \times I$. We call $\{0\} \times I$ the central fibre. Let $\varphi \colon D \times \{1\} \longrightarrow D \times \{0\}$ be a $2\pi q/p$ rotation, $\varphi(z,1) = (\alpha^q z,0)$ where as usual p and q are coprime. Define $V_{p,q} = D \times I/\varphi$, the (p,q)-fibred solid torus. Notice that $\{0\} \times I$ now gives a circle as does the set of fibres $\{\alpha^k \cdot (z \times I) : \alpha^p = 1\}$. Note that $V_{p,q}$ is given a fibring, i.e. a decomposition into circles.

Definition 17.3. A Seifert fibring of a three-manifold M is a partition \mathcal{F} of M into circles (the fibres) such that every fibre $\lambda \in \mathcal{F}$ has arbitrary small regular neighbourhoods $N(\lambda)$ all homeomorphic to $V_{p,q}$ for some fixed p,q. Here the homeomorphisms are all fibre-preserving.

Remark. The integers p, q only depend on λ .

Definition 17.4. We call p the multiplicity of λ .

Note that the space $V_{p,q}$ is Seifert fibred itself and the central fibre has multiplicity p while all other fibres have multiplicity equal to 1.

Definition 17.5. If λ has multiplicity greater than 1, then we call λ a *singular* fibre. All other fibres are called *generic*. See Figure 10.

Figure 10: Inside of $V_{3,1}$ the central fibre α is singular (with multiplicity three) while all others, for example β , are generic.

Lecture 18

Exercise 18.3. If M is compact then there are only finitely many singular fibres, all contained in the interior of M.

Exercise 18.4. Show that $L_{p,q}$ is a Seifert fibred space with at most two singular fibres. Compute their multiplicities.

Exercise 18.5. Let $K = K_{p,q}$ be the (p,q)-torus knot. Show that X_K is a Seifert fibered space. Find the singular fibres and their multiplicities.

Example 18.1. Let $M = V_1 \cup V_2 \cup V_3 \cup V_4$ as in the last lecture. Then M is a Seifert fibred space with 4 singular fibres.

Definition 18.6. Suppose (M, \mathcal{F}) is a Seifert fibred space. Let $B = M/S^1$ be the base orbifold; that is, the quotient of M sending fibres to points.

Example 18.2. Suppose $M = V_{p,q}$. The quotient M/S^1 is a disk D with a cone point at the centre. The angle at the cone point is $2\pi/p$; see Figure 11.

Figure 11: (a) The solid torus $V = V_{3,1}$. (b) A meridian disk for V. (c) The quotient V/S^1 is a cone with angle $2\pi/3$ at the cone point.

Exercise 18.6. In exercises 18.1 and 18.2, identify the base orbifolds.

Example 18.3. Notice that if $\rho: T \longrightarrow F$ is an S^1 -bundle then $T/S^1 \cong F$.

Theorem 18.2 (1.9 in Hatcher). Let M be compact, irreducible and orientable. There exists a torus system $T \subset M$ such that all components of M - n(T) are either atoroidal or Seifert fibred spaces. Furthermore any minimal such system is unique up to isotopy.

Remark. The example from last lecture, M, contains infinitely many non-isotopic incompressible tori. Hence the uniqueness of Theorem 18.2 requires that we not cut along tori in Seifert fibred spaces.