
MA4J2 Three Manifolds

Lectured by Dr Saul Schleimer
Typeset by Anna Lena Winstel

Assisted by Matthew Pressland and David Kitson

today

Lecture 16

For lens spaces, we have the following definitions:

• The quotient space Zp\S3.

• The gluing V ∪ϕW , the union of solid tori, which is either a lens space or
S2 × S1.

• The following construction: let B = {(z, t) ∈ C × R : |z|2 + t2 ≤ 1}, a
3–ball. Let D± be the upper (respectively lower) hemisphere of ∂B, as in
Figure 1.

Figure 1: D± are the upper and lower hemispheres of ∂B.

Fix α = exp(2πi/p) and glue D− to D+ by ϕ : D− −→ D+, where
ϕ(z, t) = (αqz,−t). See Figure 2.

Figure 2: The lower hemisphere is glued to the upper by a 2π · q/p twist.
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Notice that, as Figure 2 indicates, there is a nice triangulation of B by a
collection of p tetrahedra, all sharing the z–axis as an edge. Notice also
that a neighborhood of the midpoint of any edge is a half-ball

B3
+
∼= {(x, y, z) : z ≥ 0, x2 + y2 + z2 ≤ 1}

and p copies of these are glued, each to the next. So “geometrically”, an
edge has pπ dihedral angle which is (p− 2)π too much. So we consider a
lens with dihedral angle 2π/p at the equator, as in Figure 3.

Figure 3: A lens with dihedral angle 2π/p at the equator (here, p = 5).

Now we can glue and get the right amount of dihedral angle. More pre-
cisely, the lens should live in S3 and be cut out by great hemispheres, each
meeting the next at angle 2π/p. In Figure 4, you can see the lenses for
p = 10. Glue pairs of these together to get lenses for p = 5.

Figure 4: 10 copies of the lens tile S3.

Exercise 16.1. Check that the three definitions agree.

Recall that we defined the meridian and longitude µ, λ for the torus T =
V ∩W ⊂ S3. See Figure 5.

Definition 16.1. If K = sµ+ rλ then the slope of K is r/s.

Let K = sµ + rλ ∈ π1(T ), a simple closed curve. In Figure 6 for example,
K = 3µ+ 2λ has slope 2/3 in T .

Notation. For α, β ∈ π1(T ) we define α·β to be the signed intersection number.
So

µ · µ = 0 µ · λ = +1
λ · µ = −1 λ · λ = 0

and thus µ ·K = r and K · λ = s.

2



Figure 5: The torus T with meridian µ and longitude λ. Note that the orien-
tation of µ, that of λ, and the outward normal to V , in that order, obey the
right-hand rule.

Figure 6: The right handed trefoil knot K has slope 2/3. (a) K as seen in the
torus T , and (b) K as seen in R2/Z2 ∼= T .

Definition 16.2. Suppose r, s ∈ Z are coprime, with |r|, |s| > 1. We call
K = rλ+ sµ ⊂ T ⊂ S3 the (r, s)–torus knot. Then we define XK := S3−n(K),
the knot exterior. Moreover, we define VK := V −n(K), WK := W −n(K) and
A = TK = T − n(K).

In Figure 7, z is the core curve of A = VK ∩WK .

Figure 7: The cross-sections of VK and WK . The loop z is the core curve of
A = VK ∩WK , and the loops x and y are the generators of π1(Vk) and π1(Wk)
respectively.

Recall that the inclusions i : A ↪→ VK and j : A ↪→WK induce maps i∗ and
j∗ giving the following diagram:

π1(A) = 〈z〉

π1(Vk) = 〈x〉
i∗�

⊃

π1(Wk) = 〈y〉
j∗

⊂

-
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Exercise 16.2. Show that i∗(z) = xr and j∗(z) = ys hence i∗ and j∗ are
injective, where x and y are the loops shown in Figure 7.

By Seifert-van Kampen, assuming that r, s 6= 0, we get the following push-
out where the lower maps are again inclusions:

π1(A) = 〈z〉

π1(Vk) = 〈x〉
i∗�

⊃

π1(Wk) = 〈y〉
j∗

⊂

-

Z ∗Z Z ∼= 〈x, y |xr = ys 〉 =: Γr,s

�

⊃⊂

-

Via group theory, one can show that Γr,s
∼= Γp,q if and only if {|p|, |q|} =

{|r|, |s|}.

Lecture 17

Aside. Note that

• SO(2) ∼= S1,

• SO(3) ∼= P3 and

• SL(2,R) ∼= int(D × S1) ∼= R2 × S1, the latter is not an isomorphism of
groups.

Remark. We now have the following remarkable fact. Let K ⊂ S3 be the trefoil
knot and define YK = S3−K be the knot complement, an open three-manifold.
Then YK is homeomorphic to SL(2,R)/SL(2,Z).

For the following we assume that K is not the unknot, i.e. |p|, |q| ≥ 2.

Theorem 17.1. Suppose K = Kp,q is the (p, q)–torus knot, then the annulus
A = T − n(K) is the unique essential annulus in XK , up to isotopy.

We will prove this later in the course.

Corollary 17.1. Define Xp,q = XK , where K = Kp,q. Then Xp,q
∼= Xr,s if

and only if {|p|, |q|} = {|r|, |s|}.

Non-uniqueness of torus decompositions

Now we closely follow Hatcher. Let Vi ∼= D×S1, i = 1, 2, 3, 4. Let Ai ⊂ ∂Vi
be an embedded annulus and suppose Ai winds qi times about Vi with qi ≥ 2;
for examples see Figure 8.
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Figure 8: Two examples of a winding annulus; in (a) q1 = 2 and in (b) q2 = 3.

Another way to define qi is the following: Let αi be a core curve of Ai and
define qi via qi = |αi · ∂Di|. Let A′i = ∂Vi −Ai and pick ϕ : A′i −→ Ai+1 where
we take the indices modulo 4. Let M = tVi/ϕi; see Figure 9(a). Let Bi denote
the image of Ai in M . Now we define Mi = Vi ∪ϕi

Vi+1. Let T1 = B1 ∪B3 and
T2 = B2 ∪B4. Thus M = M1 ∪T1 M3 = M2 ∪T2 M4.

Figure 9: (a) A schematic of M . Bi is the image of Ai in M . (b) and (c) are
schematics of two different torus decompositions.

Finally, we claim that B1 ∪B3 and B2 ∪B4 are incompressible tori in M . If
we now choose the qi to all be distinct and coprime then, for i = 1, 2, 3, 4, then
manifold Mi is a torus knot exterior. So we have, for these choices of qi, that
M1 is not homeomorphic to M2 or M4 and M3 is not homeomorphic to M2 or
M4. Thus the torus decompositions T1 and T2 are different; see Figures 9(b)
and (c).

Remark (17.2). This requires the following facts. If Xp,q = S3−n(Kp,q), then

• ∂Xp,q is incompressible,

• Xp,q is atoroidal and

• Theorem 17.1.

We will prove these facts later. To do so, and so to understand the non-
uniqueness of torus decompositions, we must first understand Seifert fibred
spaces.
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Fibred solid tori

Fibre D×I by intervals of the form {x}×I. We call {0}×I the central fibre. Let
ϕ : D × {1} −→ D × {0} be a 2πq/p rotation, ϕ(z, 1) = (αqz, 0) where as usual
p and q are coprime. Define Vp,q = D× I/ϕ, the (p, q)–fibred solid torus. Notice
that {0} × I now gives a circle as does the set of fibres {αk · (z × I) : αp = 1}.
Note that Vp,q is given a fibring, i.e. a decomposition into circles.

Definition 17.3. A Seifert fibring of a three-manifold M is a partition F of M
into circles (the fibres) such that every fibre λ ∈ F has arbitrary small regular
neighbourhoods N(λ) all homeomorphic to Vp,q for some fixed p, q. Here the
homeomorphisms are all fibre-preserving.

Remark. The integers p, q only depend on λ.

Definition 17.4. We call p the multiplicity of λ.

Note that the space Vp,q is Seifert fibred itself and the central fibre has
multiplicity p while all other fibres have multiplicity equal to 1.

Definition 17.5. If λ has multiplicity greater than 1, then we call λ a singular
fibre. All other fibres are called generic. See Figure 10.

Figure 10: Inside of V3,1 the central fibre α is singular (with multiplicity three)
while all others, for example β, are generic.

Lecture 18

Exercise 18.3. If M is compact then there are only finitely many singular
fibres, all contained in the interior of M .

Exercise 18.4. Show that Lp,q is a Seifert fibred space with at most two sin-
gular fibres. Compute their multiplicities.

Exercise 18.5. Let K = Kp,q be the (p, q)–torus knot. Show that XK is a
Seifert fibered space. Find the singular fibres and their multiplicities.

6



Example 18.1. Let M = V1 ∪ V2 ∪ V3 ∪ V4 as in the last lecture. Then M is a
Seifert fibred space with 4 singular fibres.

Definition 18.6. Suppose (M,F) is a Seifert fibred space. Let B = M/S1 be
the base orbifold ; that is, the quotient of M sending fibres to points.

Example 18.2. Suppose M = Vp,q. The quotient M/S1 is a disk D with a
cone point at the centre. The angle at the cone point is 2π/p; see Figure 11.

Figure 11: (a) The solid torus V = V3,1. (b) A meridian disk for V . (c) The
quotient V/S1 is a cone with angle 2π/3 at the cone point.

Exercise 18.6. In exercises 18.1 and 18.2, identify the base orbifolds.

Example 18.3. Notice that if ρ : T −→ F is an S1–bundle then T/S1 ∼= F .

Theorem 18.2 (1.9 in Hatcher). Let M be compact, irreducible and orientable.
There exists a torus system T ⊂ M such that all components of M − n(T ) are
either atoroidal or Seifert fibred spaces. Furthermore any minimal such system
is unique up to isotopy.

Remark. The example from last lecture, M , contains infinitely many non-
isotopic incompressible tori. Hence the uniqueness of Theorem 18.2 requires
that we not cut along tori in Seifert fibred spaces.
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