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Lecture 19

Suppose F ⊂ M is properly embedded, and M is compact, irreducible and
orientable. Recall that (D, ∂D) ⊂ (M,F ) is a surgery disk for F if D∩F = ∂D.
D is trivial if ∂D bounds a disk in F . If D is not trivial, then it is a compressing
disk for F .

Definition 19.1. A disk D with ∂D = α ∪ β such that α and β are connected
and α ∩ β = ∂α = ∂β is a bigon; see Figure 1.

Figure 1: A bigon D.

Definition 19.2. Say D ⊂ M is a surgery bigon for F ⊂ M if D is a bigon,
D ∩ F = α and D ∩ ∂M = β. Say that D is trivial if there is a bigon D′ ⊂ F
so that ∂D′ = α′ ∪ β′, α = α′ and D′ ∩ ∂M = β′, as in Figure 2. If D is not
trivial, call it a boundary compressing bigon, or simply a boundary compression.

Figure 2: D is a trivial surgery bigon. Note that D′ is not properly embedded
in M but contained entirely in F .
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Recall that a two-sided simple closed curve α ⊂ F 2 is essential if α does not
bound a disk on either side (Figure 3(a)). A sphere S ⊂ M3 is essential if it
does not bound a three-ball on either side (Figure 3(b)). If M is irreducible then
a disk (D, ∂D) ⊂ (M,∂M) is essential if ∂D is essential in ∂M (Figure 3(c)).

Figure 3: (a) All the green curves here are essential. (b) Here S is essential in
M . (c) These disks are essential in M .

Definition 19.3. Suppose that S ⊂ M is a properly embedded, connected,
two-sided surface that is not a disk or a sphere. We say S is essential if it is
incompressible and boundary incompressible.

Definition 19.4. If all surgery disks are trivial, we call F incompressible; sim-
ilarly, if all surgery bigons are trivial, call F boundary incompressible.

Exercise 19.1. Suppose S ⊂ M is an essential surface. Show that ∂S ⊂ ∂M
is essential.

Proposition 19.1. If S ⊂ D2 × S1 is essential then S is isotopic to D2 × {z}
for some z ∈ S1.

Proof. Let µz = ∂D2×{z}. We call µz the meridian curves. Abusing notation,
let D = D2×{1}. Then by Exercise 19.1, ∂S is essential so we may isotope com-
ponents of ∂S so that all are either equal to meridian curves, or are transverse
to all meridian curves, as in Figures 4(a) and (b).

Figure 4: (a) Here the component of ∂S is meridian curve. (b) Here ∂S is
transverse to all meridian curves.
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Thus, we may assume that ∂S is transverse to µ1, and via isotopy relative
to ∂M , we may assume that S is transverse to D. Then S ∩D is a collection of
arcs and loops, as in Figure 5.

Figure 5: S ∩D is a collection of arcs and loops.

We proceed as follows:

Step 1: First suppose α ⊂ D∩S is an innermost loop, so α bounds a disk D1 ⊂ D
such that D1 ∩ S = ∂D1. So D1 is a surgery disk for S and thus, as
S is incompressible, there is a disk E ⊂ S with ∂E = ∂D1 = α, as in
Figure 6(a). So D1 ∪ E is a 2–sphere. As D × S1 is irreducible, D1 ∪ E
bounds a 3–ball B, so there is an isotopy supported in n(B) moving E
past D1; see Figure 6(b). This gives an isotopy of S, reducing |S ∩ D|.
So without loss of generality, we may assume that D ∩ S consists only of
arcs.

Figure 6: (a) E∪D1 bounds a 3–ball B, so (b) we may isotope E through n(B)
past D1 to reduce |S ∩D|.

Step 2: Now suppose α ⊂ D ∩ S is an outermost arc. So α cuts off from D a
surgery bigon D1. Since S is boundary incompressible, α cuts off a bigon
E from S. Let γ = E ∩ ∂(D×S1) and β = D1 ∩ ∂(D×S1). See Figure 7.
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Figure 7: (a) α cuts a surgery bigon D1 from D and E from S. (b) A plan view
of (a).

Notice that D1 ∪ E is a disk, with D1 ∩ E = α. Thus D1 ∪ E lifts to
áD × S1 ∼= D × R, as in Figure 8.

Figure 8: D1 ∪ E lifts toáD × S1 ∼= D × R.

Let h : D × R→ R be projection to the second factor, and notice that:

h(∂+γ) = h(∂−γ)

as ∂±γ ∈ ∂D. So by Rolle’s theorem, (h|γ)′ has a zero, so γ is not
transverse to µz for some z ∈ S1, giving a contradiction. Thus without
loss of generality, we may assume S ∩D = ∅.

Step 3: Next, define B = (D×S1)−n(D). This is a 3–ball, and S ⊂ B. Pick any
component δ ⊂ ∂S. So δ divides ∂B into disks C and C ′. So push C, say,
into B, keeping ∂C inside of S. This gives a disk in the interior of B. See
Figure 9. If C ∩ S 6= ∂C, then we may isotope S, as in Step 1, to reduce
|S ∩ C|. So C gives a surgery disk for S. Thus S is a disk.

Figure 9: Push C into B (keeping ∂C inside of S) to get a disk in the interior
of B.
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Finally, Alexander’s theorem implies that S is isotopic to D × {z} for some
z ∈ S1, fixing δ pointwise.

Note. All surgery disks for S2 are trivial, and all surgery disks and bigons for
D2 are trivial, hence they are excluded from the statement of Proposition 19.1.

Definition 19.5. Suppose (α, ∂α) ⊂ (A2, ∂A2) is an arc in an annulus. It is
trivial if it cuts a bigon off of A, and essential otherwise. See Figure 10.

Figure 10: (a) A trivial arc. (b) An essential arc.

Lecture 20

Exercise 20.2. Suppose F ⊂ M is two-sided and incompressible. Suppose
D ⊂M is a surgery bigon for F and suppose FD is the result of surgery. Show
that FD ⊂M is incompressible.

Exercise 20.3. Deduce from the above that if ρ : T → F is an I–bundle then
∂hT is boundary incompressible.

Lemma 20.2 (1.10 in Hatcher). Suppose that S ⊂M is a connected, two-sided,
incompressible surface, and M is irreducible. Suppose S admits a boundary
compressing bigon D with ∂D = α ∪ β, α = D ∩ S, β = D ∩ ∂M and β
is contained in a torus component T ⊂ ∂M . Then S is a boundary parallel
annulus.

Proof. By Exercise 19.1, ∂S ∩ T is essential in T . Let A = T − n(∂S), so A is
a collection of annuli. So β ⊂ A is either trivial or essential, as in Figure 11(a).

Case 1: Suppose that β ⊂ A is trivial. So β cuts a bigon E off of A. Then D ∪E
is a disk. Isotope D ∪E, keeping ∂(D ∪E) in S, to get a surgery disk for
S; see Figure 11(b).
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Figure 11: (a) β1 is essential while β2 is trivial. (b) Trivial arcs define a surgery
bigon for S.

Since S is incompressible, D ∪ E cuts a disk D′ out of S, and hence D
was a trivial surgery bigon, as in Figure 12.

Figure 12: D ∪ E cuts a disk D′ from S and so D is trivial.

Case 2: Suppose β is essential in A. If ∂B is contained in a single component of
∂S, then S is one-sided, giving a contradiction. To see this, we can orient
β and ∂S so that both intersections have positive sign, as in Figure 13.

Figure 13: We can orient β and ∂S so that both intersections have positive sign.

Then following α we find that S is one-sided, as in Figure 14.
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Figure 14: Carrying the orientation along α gives a different orientation to
carrying along ∂S, a contradiction.

So we have that β connects distinct components of ∂S, as in Figure 15.

Figure 15: β connects distinct components of ∂S.

Boundary compress S along D to get SD. Note that SD is incompressible,
by Exercise 20.2, and that SD has a trivial boundary component, so SD
is a disk. To see this, say ∂SD bounds E in T . So isotope E into E′ in
M , keeping ∂E in SD, as in Figure 16.

Figure 16: Cutting along β gives two components of ∂Sβ , and the identification
gives a trivial curve in ∂SD.

Since SD is incompressible, ∂E′ must cut a disk out of SD, so SD is a
disk. Since M is irreducible, SD is boundary parallel; in fact it is parallel
to the original E.
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Figure 17: SD is boundary parallel.

So SD cuts a 3–ball B out of M . Letting V = B ∪ N(D), this is a solid
torus, giving a parallelism of S with the annulus A, as in Figure 18.

Figure 18: S is boundary parallel to the annulus A.

Definition 20.6. Suppose that (M,F) is Seifert fibred. Then we say that a
properly embedded surface S ⊂ M is vertical if S is a union of fibres, and it
is horizontal if S is transverse to the fibres. We make the same definitions for
S ⊂ T for an I–bundle ρ : T → F .

Exercise 20.4. All essential surfaces S ⊂ T , where ρ : T → F is an I–bundle,
are isotopic to either vertical or horizontal surfaces.

Lecture 21

Lemma 21.3 (1.11 in Hatcher). Suppose that (M,F) is compact, connected
and irreducible. Supppose S ⊂ M is essential. Then after a proper isotopy, S
is either vertical or horizontal.

Proof. Let Z := {αi}ki=1 be the set of singular fibres of F ; if M has no singular
fibres, and ∂M = ∅, then let {α1} be a single generic fibre. Let M0 = M−n(Z).
Let B = M/S1 and let B0 = M0/S

1. Note that ∂B0 6= ∅. In fact B0 is B with
neighbourhoods of cone points removed, as in Figure 19.
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Figure 19: B0 is B with neighbourhoods of cone points removed.

Example 21.1. If M = Vp,q then Z is just the central fibre. Then M0 = A2×S1

and B0 = A2; See Figure 20.

Figure 20: M0 = A2 × S1 and B0 = A2.

Choose a system of arcs in B0 cutting B0 into a disk, i.e. as in Figure 21.

Figure 21: We may choose a system of arcs cutting B0 into a disk.

LetA ⊂M0 be the vertical annuli above this system of arcs. SoM0−n(A) =: M1

is a solid torus, fibred by F|M1, with all fibres generic. Given an essential surface
S, all components of ∂S are essential in ∂M .

(i) We may isotope them to all be vertical or horizontal with respect to the
fibring F|∂M .

(ii) Isotope S (relative to ∂S) so that S meets Z transversely, and so meets
n(Z) in horizontal disks. Define S0 = S ∩M0, and make S0 intersect A
transversely. Consider the arcs and loops of S0 ∩A, as in Figure 22.
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Figure 22: (a) An essential loop. (b) Trivial loops. (c) Trivial arcs. (d) An
essential arc.

(iii) If there is a trivial loop, then there is an innermost such. Now, using
incompressibility of S and irreducibility of M , there is an isotopy of S
reducing |S ∩ A| as usual. So without loss of generality, there are no
trivial loops.

(iv) Suppose β ⊂ S ∩A is an outermost trivial arc and let D be the bigon cut
our of A by β. If ∂β ⊂ ∂M then D is a surgery bigon for S, but as in
Proposition 19.1, ∂S is either contained in or transverse to F|∂M , giving
a contradiction. To see this, since S is boundary incompressible, there is
a bigon E contained in S, as in Figure 23.

Figure 23: γ is parallel to the fibres.

So letting ∂E = β ∪γ′, we find that γ′ is not transverse to F|∂M . On the
other hand, if ∂β ⊂ ∂M0 − ∂M , then a baseball move across D reduces
|S∩(Z)| by two. Now without loss of generality, every component of S∩A
is either horizontal or vertical.
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Figure 24: A baseball move across α reduces |S ∩ Z| by 2.

(v) Define S1 = S0 ∩M = S0 − n(A). So ∂S1 ⊂ M1 is completely horizontal
or completely vertical. We may assume that S1 is incompressible in M1.
Thus S1 is either a collection of horizontal meridian disks, or a collection
of boundary parallel annuli. If S1 contains an annulus with slope that of
the meridian, then S1 is compressible. If S1 contains an annulus B ⊂ S1

with ∂B horizontal, then we see a surgery bigon with vertical boundary.
So do a baseball move and return to case (iv).

Figure 25: If S1 contains an annulus B with ∂B horizontal, we may do a baseball
move and reduce to case (iv).

So S1 is now a collection of horizontal meridian disks, or a collection of
boundary parallel vertical annuli. It follows that S0, and so S, is either
horizontal or vertical.

Remark. Vertical surfaces are easy to classify. They are orientable or not, and
the base is I or S1.

Base Orbifold I S1

A2 T 2 orientable
M2 K2 non-orientable
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