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Lecture 22

Notation. Suppose F is not orientable. Let F ∼× I denote the orientation I–
bundle over F . Likewise define F ∼× S1.

Exercise 22.1. Show that P 2 ∼× I is homeomorphic to P 3 − int(B3).

We now discuss orbifolds.

Definition 22.1. We say that B = (S,Z) is an 2–orbifold if S is a surface and
Z ⊂ int(S) is a finite set such that for every z ∈ Z we have an order pz ∈ Z+.
We call Z the singular set. A point z ∈ Z is a cone point if pz > 1.

Example 22.1. A surface is an orbifold with Z = ∅.

Example 22.2. The square pillow case, S2(2, 2, 2, 2), shown in Figure 1, is an
orbifold.

Figure 1: A picture of the square pillow case S2(2, 2, 2, 2).

Definition 22.2. If S is a surface with a triangulation T then we define the
Euler characteristic of S to be χ(S) = V −E +F where V denotes the number
of vertices, E the number of edges and F the number of triangles (faces).

Exercise 22.2. Show that χ stays unchanged under the Pachner moves. Fig-
ure 2 shows the Pachner moves. Since any two triangulations of a fixed closed
surface are related by Pachner moves, the Euler characteristic is independent of
the choice of T .
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Figure 2: The Pacher moves.

Example 22.3. You can see by the triangulation shown in Figure 3(a) that
χ(S2) = 4− 6 + 4 = 2. Similarly, Figure 3(b) shows that χ(T 2) = 1− 3 + 2 = 0.

Figure 3: (a) A triangulation of a 2–sphere. (b) A triangulation of the 2–
dimensional torus.

Definition 22.3. We define the Euler characteristic of an orbifold via

χorb(B) = χ(S) +
∑
z∈Z

(
1

pz
− 1

)
.

Example 22.4. χorb(S2(2, 2, 2, 2)) = 2 + 4(1/2− 1) = 0.

Exercise 22.3. List all 2–orbifolds B so that χorb(B) = 0.

Exercise 22.4. What can you say about B so that χorb(B) > 0?

Orbifold Covers

Example 22.5. The map from D ⊂ C→ D which sends z to zn is an orbifold
map of order n. In Figure 4, n = 3.

Figure 4: The map z 7→ z3 from D ⊂ C to itself is a three-fold cover.
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Definition 22.4. If C,B are 2–orbifolds then ϕ : C → B is a cover if

1. ϕ−1(ZB) = ZC ,

2. ϕ|(C − ZC) : C − ZC → B − ZB is a d–fold cover and

3. for every point z ∈ ZB , we have d/pz =
∑

y∈ϕ−1(z)

1/py.

Note that ϕ restricted to any regular neighbourhood of a point z ∈ ZC is
modelled on the example z 7−→ zn.

Example 22.6. The quotient of T 2 via the 180◦ rotation shown in Figure 5 is
a degree two orbifold cover.

Figure 5: The quotient map of the 2–dimensional torus via the 180◦ rotation.

Exercise 22.5. Show that if ϕ : C → B is a d–fold orbifold cover then χorb(C) =
d · χorb(B). As warm-up, show that if ϕ : T → S is a d–fold cover of surfaces
then χ(T ) = d · χ(S).

Exercise 22.6. List all 2–fold covers of S2(2, 2, 2, 2).

The following question is known as the Hurwitz problem and still open in
general: Given B,C such that χorb(C)/χorb(B) ∈ {2, 3, 4, . . .} does there exists
a d–fold cover?

Example 22.7. For n ≥ 2, S2(n) is a bad orbifold, meaning it is not covered
by a surface. Hence S2(n) is not covered by S2. You can also see this because
2/(2 + (1/n− 1)) /∈ N.

We now return to our original topic, horizontal surfaces. Suppose that S ⊂
(M,F) is horizontal. As in the proof of Lemma 21.4, we may form M ⊃M0 ⊃
M1 and S ⊃ S0 ⊃ S1. Let λ be any generic fibre and d = |S ∩ λ|, so S1

is a collection of d horizontal disks. Recall that Z is the set of all singular
fibres. Thus S∩ (N(Z)) is also a collection of disks. Then S is formed by gluing
horizontal disks along horizontal loops in ∂N(Z) and horizontal arcs in A. Thus
the quotient ρ : M →M/S1 = B restricts to S to give a d–fold cover ρ : S → B.
So

χ(S) = d · χorb(B) = d ·

(
χ(B) +

∑
z∈Z

(
1

pz
− 1

))
.

Proof. See Hatcher.
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Lecture 23

To answer the question of a student, we will expand the definition of a boundary
compression.

Definition 23.5. Suppose S ⊂ ∂M is a subsurface. Then we say S is boundary
compressible if there is a bigon D with ∂D = α ∪ β so that D ∩ S = α, D ∩
∂M − S = β and α does not cut a bigon out of S. Say that S is boundary
incompressible if no such bigon exists.

Now we continue our discussion of horizontal surfaces. Suppose that S ⊂
(M,F) is two-sided, horizontal and connected. Then we get the following corol-
lary of Proposition 21.3 (1.11 in Hatcher).

Corollary 23.1. The manifold M − n(S) is an I–bundle.

Proof sketch. Recall that S1 was a collection of horizontal disks in M1
∼= D×S1.

So n(S1) cuts M1 into cylinders foliated by intervals. The vertical sides of these
solid cylinders glue to give the desired I–bundle.

Let ρ : M − n(S) −→ F be the I–bundle map. Then there are two cases.

1. The manifold M − n(S) is connected. So M − n(S) ∼= S × I and thus
∂h(M − n(S)) = S t S and so F ∼= S and we find that M is an S–bundle
over S1. See Figure 6.

Figure 6: A picture of M − n(S) as an S–bundle over S1. The blue curve
represents a generic fibre.

So the I–fibres in N(S) and in M − n(S) glue to give the Seifert fibring,
F . I.e., there is a monodromy (a homeomorphism ϕ : S −→ S) such
that M ∼= S × I/(x, 1) ∼ (ϕ(x), 0) =: Mϕ and finally S/ϕ ∼= B. The
monodromy is periodic of period d = |S ∩ λ|, i.e. ϕd = IdS . See Figure 7.
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Figure 7: M = (M − n(S)) ∪N(S) ∼= Mϕ. Here ϕ has periodicity 4.

Example 23.8. Let ϕ be the hyperelliptic involution on the 2–torus
shown in Figure 5. This is periodic.

Example 23.9. Glue the cube as shown in Figure 8 and note that planes
parallel to the xy–plane glue to give tori.

Figure 8: A cube with face pairings. The front and back are glued by the identity
as are the left and right face. The bottom and top face are glued together by a
180◦ rotation.

Note that intervals parallel to the z–axis glue to give circles, 4 of length 1
and the rest of length 2.

Figure 9: A picture of the different circles achieved by gluing intervals parallel
to the z–axis. The gluings of the vertical faces are the same as in Figure 8 and
are omitted.
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All of the singular fibres in Figure 9 have length one, while all other
vertical circles have length two. All other vertical circles have length 2.
So B ∼= S2(2, 2, 2, 2) is the base orbifold, double covered by double covered
by any horizontal surface, all of which are tori. See Figure 10.

Figure 10: The base orbifold is a copy of the square pillow case: B ∼= M/S1 ∼=
S2(2, 2, 2, 2), and double covered by T .

2. If M − n(S) has two components then each is a twisted I–bundle over F
and these glue to N(S) ∼= S×I giving a semibundle (also called a fibroid).
See Figure 11.

Figure 11: A picture of the two twisted I–bundles over F .

So letting T1 and T2 be the two I–bundles, we obtain M by gluing T1 and
T2 to N(S) and find involutions τi : S −→ S such that Ti = S× I/(x, 0) ∼
(τi(x), 0). Here the homeomorphism ϕ = τ1 ◦ τ2 is again periodic.

Example 23.10. As an exercise, we showed that P 3− int(B3) = P 2 ∼× I.
Here ∂hT ∼= S2 and the involution τ is the antipodal map. So if we con-
sider T1 ∪S T2 where Ti ∼= P 2 ∼× I, we find that P 3 # P 3 is Seifert fibred.
Check that τ1 ◦ τ2 = τ2 = ϕ = IdS and so it is periodic.

Figure 12: A picture of the gluing of T1 ∪S T2.
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Example 23.11. Consider the cube with face pairings given in Figure 3. Notice
that the intervals parallel to the x–axis also define a Seifert fibring with B = K2,
the Klein bottle, and all fibres are generic, as in Figure 13(a). The planes
y = 1/4 and y = 3/4 define a 2–torus S ⊂M and M−n(S) has two components,
both homeomorphic to K ∼× I.

Figure 13: (a) Intervals parallel to the x–axis give a fibring with B = K2. (b)
Both components of M − n(S) are homeomorphic to K2 ∼× I.

Exercise 23.7. Check that these planes give a 2–torus with the claimed prop-
erties. Find the involutions τ1, τ2.

Lecture 24

Recall that every essential arc in A2 ∼= S1 × I is isotopic to {pt} × I, as in
Figure 14.

Figure 14: An essential arc in an annulus.

Exercise 24.8. Classify up to isotopy the essential arcs and loops in #3D
2,

the pair of pants.

Figure 15: Two diagrams of the Pair of Pants.
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Recall that if X = XK where K = Kp,q is the (p, q)–torus knot then B =
X/S1 is the orbifold D2(p, q).

Exercise 24.9. Classify essential arcs and loops in D(p, q). Deduce that the
only essential vertical annulus in X is A = VK ∩WK . (Care is required if p or
q is equal to 2, as then X contains a vertical Mobius band.)

Figure 16: A diagram of D2(p, q). Note that the A here is the projection of the
annulus into the orbifold.

Exercise 24.10. Use orbifold Euler characteristic to show that any horiontal
surface S ⊂ X has χ(X) ≤ p + q − pq < 0 as p, q ≥ 2 and p 6= q. Deduce that
X is atoroidal and A is the unique essential annulus in X, up to isotopy.

Exercise 24.11 (Harder). Use Exercise 24.10 to prove that

g(Kp,q) =
(p− 1)(q − 1)

2

where g(K) is the minimal genus of a spanning surface for K.

Furthermore, X is a surface bundle over S1 with monodromy of order pq.
To show this, let S be the minimal spanning surface and consider X − n(S).

Aside. To answer the question of a student, we define the Euler characteristic
of an n–manifold.

Definition 24.6. We define χ(Mn) by taking a finite triangulation of M
and setting χ(M) =

∑n
k=0(−1)k|T (k)| where |T (k)| denotes the number of k-

simplices in the image ‖T‖.

Proposition 24.2 (1.12 in Hatcher). Suppose (M,F) is compact, connected
and Seifert fibred. Then M is irreducible or M is homeomorphic to one of
S2 × S1, S2 ∼× S1 or P 3 # P 3.

Proof. Suppose S ⊂ M is an essential 2–sphere. Following the proof of Propo-
sition 23.1 (1.11 in Hatcher) with surgery of essential surfaces replacing isotopy
of essential spheres, we find an essential 2–sphere S′ such that S′ is vertical or
horizontal. Since S′ is not A2, T 2,M2 or K2, we find S′ must be horizontal.

1. If S′ is non-separating, then M − n(S′) is homeomorphic to S2 × I. So
M ∼= S2 × S1 or S2 ∼× S1.

2. If S′ separates, then it is an exercise to show that M ∼= P 3 # P 3.
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Proposition 24.3 (1.13 in Hatcher). Let (M,F) be as above. Then

1. every horizontal 2–sided surface is essential and

2. every vertical 2–sided surface is essential except for tori bounding fibred
solid tori and boundary parallel annuli cutting off fibred solid tori.

Proof. Suppose that D is a surgery disk or bigon for S ⊂M .

1. Suppose S is horizontal. By the previous discussion, M − n(S) is an
I–bundle and D gives a surgery for ∂h(M − n(S)). But the horizontal
boundary of an I–bundle is always essential.

Exercise 24.12. The horizontal boundary of an I–bundle is always es-
sential.

2. Suppose S is vertical. So D gives a surgery in M ′ ⊂M − n(S) where M ′

is the component of M−n(S) containing D. Suppose D is essential. Since
D ⊂ M ′ is essential, D must be vertical or horizontal, hence horizontal.
Let B = M ′/S1.

Exercise 24.13. Show that B is a disk with at most one orbifold point.
Hint: use that d · χorb(B) = χ(D) = 1.

Thus M ′ is a solid torus. If D was a bigon, then, as D ∩ ∂M = D ∩ ∂M ′
is a single arc, the fibring of M ′ is the trivial fibring, so M ′ ∼= V1,0.
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