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Lecture 25

Lemma 25.1 (1.14 in Hatcher). Let A ⊂ (M,F) be an essential annulus. Then
A can be properly isotoped to be vertical with respect to F , possibly after changing
F if M is T × I, T ∼× I, K × I or K ∼× I.

Proof. Since A is essential, it may be isotoped to be vertical or horizontal.
Suppose A is horizontal. So M −n(A) is an I–bundle with annuli as horizontal
boundary components.

(i) If M − n(A) is connected, then M − n(A) ∼= A× I. So

M = A× I/(x, 1) ∼ (ϕ(x), 0) =: Mϕ,

as in Figure 1.

Figure 1: M = (A× I)/((x, 1) ∼ (ϕ(x), 0)).

But there are only four possibilities for ϕ, up to isotopy: the identity,
reflections switching or preserving the boundary components, and the ro-
tation given by composing these reflections. See Figure 2.

1



Figure 2: The three non-trivial possibilities for ϕ.

Exercise 25.1. Show that MCG(A) = Z2 ⊕ Z2. Here MCG(S) is the
mapping class group of S, the group of homeomorphisms of S, up to
isotopy.

These four maps give the four exceptions.

Exercise 25.2. Check this.

(ii) If M − n(A) has two components, as in Figure 3, then M − n(A) ∼=
M2 ∼× I tM2 ∼× I.

Figure 3: M − n(A) may have two components.

Note that M2 ∼×I is a cube with a pair of opposite faces glued by a π twist,
shown in Figure 4.

Figure 4: A picture of M2 ∼× I.

Exercise 25.3. Find the Möbius bands in this cube.

It is again an exercise to show that all four gluings give K ∼× I with base
orbifold D2(2, 2).
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Note. We have an exact sequence of groups: S1 → K ∼× I → D2(2, 2)

1 - Z - π1(K2) - D∞ - 1

1 -
¬
a2
¶

-
¬
a, b | a2 = b2

¶
-

¬
a, b | a2 = b2 = 1

¶
- 1

coming from the long exact sequence for the Seifert fibering. See Theorem 4.41
page 276 of Hatcher’s Algebraic Topology for more details.

Lemma 25.2 (1.15 in Hatcher). Let (M,F) be as above. Then the slopes of
F|∂M are determined by M only, unless M is Vp,q or one of the four exceptions
above.

Proof. If ∂M = ∅ then we have nothing to prove. If B = M/S1 has no essential
arcs, then B = D2(p).

Exercise 25.4. Check this.

Then M ∼= D × S1 and we are done. So let α ⊂ B be an essential arc. See
Figure 5.

Figure 5: Two examples of essential arcs in (a) where B = D2(p, q, r) with
p, q, r > 1, and (b) where B = T 2#D2(p).

Let A ⊂M be the vertical annulus above α. In this case:

(i) A is essential by Lemma 1.13 in Hatcher.

(ii) A is vertical in any fibering of M , with exceptions as above, by Lemma
1.14 in Hatcher.

So ∂A is determined by M alone, and we are done.

Remark. Note that in the above we used the fact that solid Klein bottles are
not Seifert fibered spaces.

Exercise 25.5. Show that the solid Klein bottle can be partitioned as a disjoint
union of circles. Show, nonetheless, that the solid Klein bottle cannot be Seifert
fibered.

Exercise 25.6. Show that K × I contains a solid Klein bottle, yet is still a
Seifert fibered space.
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Lemma 25.3 (1.16 in Hatcher). Suppose M is connected, compact, orientable,
irreducible and atoroidal. Suppose A ⊂ M is an essential annulus with ∂A
contained in torus components of ∂M . Then M admits a Seifert fibering.

Proof. Let M,A be as above. Let T be the components of ∂M meeting A. Let
N = N(A ∪ T ). So there are three cases:

(i) A meets two boundary components, T1 and T2, as in Figure 6.

Figure 6: A meets two boundary components.

(ii) A meets a single boundary component without twisting, as shown in Fig-
ure 7.

Figure 7: A meets a single boundary component without twisting.

(iii) A meets a single boundary component with a twist, as shown in Figure 8.

Figure 8: A meets a single boundary component with a twist.

Note. Note that Figures 6, 7 and 8 give a cross section of N . For example in
Figure 6, the entirety ofN is shown in Figure 9. Unfortunately the neighborhood
N , in the third situation, does not embed in R3.
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Figure 9: The whole of N in case (i), of which Figure 6 is a cross section. The
front and back faces and edges are identifed.

Note that N(A) and N(T ) are Seifert fibered, and we may glue these fibrings
to get a fibering of N . Fix F , a component of ∂N − ∂M . In other words, a
component of the frontier of N in M . Note that F ∼= T2.

(i) Suppose that F compresses in M via a disk (D, ∂D) ⊂ (M,F ). Since A
is essential we may arrange via an isotopy to have A ∩ D = ∅. So we
may assume that D ∩ N = ∂D; thus F compresses to the “outside” of
N . So FD is a 2–sphere bounding a ball B ⊂ M . Note that N ⊂ B is
a contradiction as ∂M ∩ ∂N 6= ∅. So X = B ∪ N(D) is a solid torus
attached to F .

(ii) Suppose F is boundary parallel. Say M−n(F ) contains X, with X ∼= F×I
the parallelism. Since A is essential, we find that X ∩N = F , as N ⊂ F
leads to a contradiction.

So the fibering on N extends to a fibering on N ∪ X. We do the same for all
components of ∂N − ∂M .

Exercise 25.7. Read the proof of Theorem 1.9 in Hatcher.

Lecture 26

We now state the Poincaré conjecture, proved by Perelman, following a program
of Hamilton.

Poincaré Conjecture. Suppose M3 is closed and simply connected. Then M
is homeomorphic to S3.

Recall that closed means that M is compact and ∂M = ∅. Simply con-
nected means that M is connected and π1(M) = {1}. Note that the equivalent
statement in dimension two follows from the classification of surfaces and the
Seifert-van Kampen theorem. In dimensions greater than three, the conjecture
was solved previously by (among others) Smale, Stallings, and for dimension
four, Freedman.

5



Remark. Poincaré originally conjectured that if H1(M,Z) = 0 then M = S3.
He then gave a counterexample to this, called the Poincaré homology sphere.
Let D be the dodecahedron and let P = D/∼, where we glue opposite faces
with a 1/10 right-handed twist, as in Figure 10.

Figure 10: The Poincaré homology sphere. This diagram is adpated from one
in The Shape of Space by J. Weeks.

Exercise 26.8. Let Γ = π1(P ). Give a presentation of Γ and check that
Γab = 0.

Exercise 26.9. What if we use a 5/10 twist?

Remark. If we use a 3/10 twist we get the Seifert-Weber dodecahedron space.
See Figure 11.

Figure 11: The Seifert-Weber dodecahedron space. This diagram is adapted
from one in The Shape of Space by J. Weeks.

Definition 26.1. We say a knot K ⊂ S3 is spanned by a surface F ⊂ S3 if
F is embedded and two-sided away from ∂F , and ∂F = K. In other words,
the boundary of F wraps exactly once about K. See Figure 12a. Equivalently,
S ⊂ XK is a spanning surface for K if it is two-sided, embedded, |∂S| = 1 and
the following holds. Let N = N(K) and let (D, ∂D) ⊂ (N, ∂N) be a meridian
disk. Let µ = ∂D. Then the transverse intersection µ ∩ ∂S is a single point.
See Figure 12b.
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Figure 12: Diagrams of equivalent definitions of the spanning surface.

Recall that a knot K is the unknot if K is isotopic to a round circle.

Theorem 26.4. Suppose K ⊂ S3 is a knot. The following are equivalent:

(i) K is the unknot.

(ii) K is spanned by a disk E.

(iii) XK = S3 − n(K) is a solid torus.

(iv) π1(XK) ∼= Z.

See Figure 13.

Figure 13: Illustration of Theorem 26.4.

Proof.

(i) =⇒ (ii) Use ambient isotopy.

(ii) =⇒ (iii) Use irreducibility of XK and the fact that (∂XK)E ∼= S2. Note that
E ⊂ XK is essential as ∂E ∩ µ is a point. So if (∂XK)E bounds a 3–ball
B, we have B ∪N(E) ∼= E × S1 is a solid torus.

(iii) =⇒ (i) This follows from Exercises 2.2 and 6.6.
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(iii) =⇒ (iv) Since π1(X × Y ) = π1(X)× π1(Y ), we have π1(XK) ∼= π1(S1) = Z.

(iv) =⇒ (iii) We must show that if M is irreducible, ∂M = T2 and π1(M) ∼= Z, then
M ∼= D × S1. This requires Dehn’s Lemma.

Exercise 26.10. Deduce (iv) =⇒ (iii) from the following lemma.

Dehn’s Lemma (Papakyriakopoulos, 1957). Suppose α ⊂ ∂M is a simple
closed curve, bounding a singular disk in M . Then α bounds an embedded disk
in M .

Loop Theorem. Suppose F is a component of ∂M , and i∗ : π1(F ) → π1(M)
is not injective. Then there is an essential simple closed curve α ⊂ F such that
[α] = 1 ∈ π1(M).

This leads nicely to the following conjecture.

Simple Loop Conjecture. If i : F # M is a two-sided map, and i∗ is not
injective, then there is an essential simple loop in the kernel.

This has been proved by Gabai if M is a surface, and by Hass if M is Seifert
fibered.

Exercise 26.11. Prove the simple loop conjecture when F is two-sided and
properly embedded in M .

Lecture 27

Disk Theorem. Suppose that F ⊂ ∂M is a component, and i∗ : π1(F ) →
π1(M) is not injective. Then there is an essential disk (D, ∂D) ⊂ (M,F ).

Exercise 27.12. Show that the Disk Theorem is implied by the Loop Theorem
and Dehn’s Lemma.

The Disk Theorem is the first “promotion” theorem, among many others. For
example we have the following:

Sphere Theorem. Suppose M is an orientable 3–manifold with π2(M) non-
trivial. Then there is an embedded 2–sphere S ⊂M such that [S] 6= 1 ∈ π2(M).

In general we assume that there is an essential map (F, ∂F ) # (M,∂M).
The corresponding promotion theorem gives us an embedding. For example, F
could be a disk or sphere (due to Papakyriakopoulos), a projective plane (due
to Epstein), an annulus or torus, or indeed any F with χ(F ) ≥ 0.

We now discuss hierarchies. Suppose that M0 = M , suppose that Si ⊂Mi is a
properly embedded two-sided surface, and define:

Mi+1 := Mi − n(Si).

So we have a sequence of manifolds:

M0
S0- M1

S1- M2
S2- · · · Sn−1- Mn.
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Definition 27.2. Call a sequence {Mi, Si} a partial hierarchy if every Si is
essential in Mi.

Note. Some authors only require Si to be incompressible.

The following example demonstrates why we require the Si to be essential.

Example 27.1. Take annuli in V2, the genus 2 handlebody, as in thr right hand
side of Figure 14, and glue them to give M0

∼= V2. Let S0 be the single annulus
given by the image of the two annuli under the gluing map. Then cutting along
S0 gives M1

∼= V2, so we could continue the process indefinitely.

Figure 14: Note that S0 is inside M0, not on the boundary (although ∂S0 ⊂
∂M0).

Equivalently, one can think of V2 as
�
T 2 − n(

�
B2

��
× I, as in Figure 15.

Figure 15: Another way to look at V2.

Cut along A to get the pair of pants ×I, as in Figure 16.
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Figure 16: Let F = T − int(D) be a once-holed torus. Let G be a pair of pants.
Cutting F × I along a vertical annulus gives a copy of G× I. As F × I ∼= G× I
this could lead to an infinite hierarchy, were we to allow non-essential surfaces.

Definition 27.3. If Mn is a collection of 3–balls, then the partial hierarchy is
simply called a hierarchy.

Example 27.2. Let M0 = T3, thought of as the unit cube in R3 with face
pairings. Let S0 ⊂ M0 be the image of the xy–plane, so S0

∼= T 2. Then
M1
∼= T×I. Let S1 be the image of the yz–plane, so S1

∼= A2, and M2
∼= D×S1.

Let S2 be the image of the zx–plane, a disk. Then M3
∼= B3. See Figure 17.

Figure 17: A hierarchy of length three for the three-torus.

Example 27.3. Let M0 = XK , where K is the (p, q)–torus knot, as shown

in Figure 18, and let S0 = A, the unique essential annulus. Then XK
A→

VK tWK = M1. Now letting S1 be a pair of meridian disks, one in each of VK
and WK , we find that M2

∼= B3
1 tB3

2 . See Figures 19 and 20.

10



Figure 18: The (p, q)–torus knot complement, M0.

Figure 19: Compressing disks for VK and WK .

Figure 20: The final stage of the heirarchy.

Definition 27.4. If M is compact, orientable and irreducible, and S ⊂ M is
properly embedded, two-sided and essential, then M is called Haken.

Theorem 27.5. If M is compact, orientable, irreducible and ∂M 6= ∅, then
either M is a 3–ball or M is Haken.

This theorem is implied by the following:

Theorem 27.6. If M is compact, orientable and irreducible, and if

rank(H1(M,Z)) ≥ 1

then M is Haken.
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