MA4J2 Exercise sheet 11. Please let me know if any of the problems are unclear or have typos. **Exercise 11.1.** [Medium] After recalling the definitions show that the lens space L(2,1), the projective space \mathbb{RP}^3 , the Lie group SO(3), and the unit tangent bundle UT S^2 are all homeomorpic. The Hopf fibration on S^3 descends to a Seifert fibered structure on L(2,1); this is isomorphic to the natural S^1 -fibration of UT S^2 . The Euler number is two. **Exercise 11.2.** We say an unoriented simple closed curve $\alpha \subset \mathbb{T}^2$ is *essential* if α does not bound a disk in \mathbb{T}^2 . Isotopy of essentially curves is an equivalence relation; the classes of the relation are called *slopes*. Show the set of slopes is naturally in bijection with $\mathbb{Q} \cup \{1/0\}$. Show if α and β correspond to p/q and r/s then the algebraic intersection number satisfies $$|\alpha \cdot \beta| = |ps - qr|,$$ after chosing orientations for α and β . **Exercise 11.3.** Suppose that M is a Seifert fibered space. Let $B = M/S^1$. There are three orientations to consider: orientability of M as a three-manifold, orientability of B as a two-orbifold, and orientability of the fibration. (The last is equivalent to the fibration arising as the orbits of an S^1 -action on M.) Show, via examples, that none, all, or any two of these can be twisted. However, it is impossible for exactly one of them to be twisted. **Exercise 11.4.** Check, directly from the definition, that $e(S^1 \times F) = 0$: the Euler number of a product fibration is zero. ## Exercise 11.5. [Medium] - Let M_h be the half-turn manifold from Exercise 7.6. Compute the Euler number $e(M_h)$ directly from the definition. Check also that M_h is double covered by the three-torus. - Do the same for M_r , the quarter-turn manifold from Exercise 8.6. Show M_r is double covered by M_h . **Exercise 11.6.** The Hopf fibration on S^3 descends to give a fibration of L = L(p,q). Show that $e(L) = p^{\pm 1}$; determine how q affects the answer. **Exercise 11.7.** [Medium] Suppose F is a connected closed surface. Equipping UT F with the usual S^1 -bundle structure, show $e(\text{UT }F) = \chi(F)$. (This fixes the sign convention for the Euler number.) 2012/03/17