MA4J2 Exercise sheet 3.

Please let me know if any of the problems are unclear or have typos.

Exercise 3.1. Recall that $ds^2 = dx^2 + dy^2$. In class we showed that $\mathbb{R}^2 \rtimes O(2) < \text{Isom}(\mathbb{E}^2)$. We also showed that straight lines are geodesics. Prove $\mathbb{R}^2 \rtimes O(2) \cong \text{Isom}(\mathbb{E}^2)$.

Exercise 3.2. Show great circles are geodesics for \mathbb{S}^2 . Prove Isom(\mathbb{S}^2) = O(3).

Exercise 3.3. Let $ds_S = 2ds/(1+r^2)$, where $r^2 = x^2 + y^2$. Consider the metric space $\mathbb{X} = (\mathbb{R}^2, ds_S)$. Prove \mathbb{X} is not complete. [Optional challenge: Prove \mathbb{X} is locally homogeneous.]

Exercise 3.4. Let $ds_L = ds/r$, with ds and r as above. Consider the metric space $\mathbb{L} = (\mathbb{R}^2 - \{0\}, ds_L)$. Prove from the definitions \mathbb{L} is complete and homegeneous. [Optional challenge: Compute Isom(\mathbb{L}). Classify geodesics in \mathbb{L} .]

Exercise 3.5. Here is another way to approach Exercise 3.4. With \mathbb{L} as in that exercise, show the map $\rho \colon \mathbb{E}^2 \to \mathbb{L}$, defined by $\rho(x,y) = (e^x \cos y, e^x \sin y)$, is an isometric covering map. Deduce \mathbb{L} is modelled on \mathbb{E}^2 and so is complete and (locally) homogeneous.

Exercise 3.6. Let $ds_D = 2ds/(1-r^2)$. Consider the metric space $\mathbb{D} = (\mathbb{D}^2, ds_D)$ where $\mathbb{D}^2 \subset \mathbb{R}^2$ is the open unit disk. Prove \mathbb{D} is complete and homogeneous.

Exercise 3.7. Suppose (X, Isom(X)) is a geometry and G < Isom(X) is a subgroup. Prove G is discrete in Isom(X) if and only if G acts properly discontinuously on X.

Exercise 3.8. Show every isometry $f \in \text{Isom}(\mathbb{E}^2)$ is either the identity, a reflection in a line, a translation, a rotation about a point, or a glide reflection along a line.

Exercise 3.9. Show every $f \in \text{Isom}(\mathbb{S}^2)$ is a product of reflections in great circles. As in Exercise 3.8 give a classification of elements of $\text{Isom}(\mathbb{S}^2)$. [Hint: it may be useful to first review the classification of elements of $\text{Isom}(\mathbb{S}^1)$.]

Exercise 3.10. Let $R_a \in \text{Isom}(\mathbb{E}^1)$ be the reflection $R_a(x) = 2a - x$. Give the details of the proof that $\langle R_0, R_1 \rangle < \text{Isom}(\mathbb{E}^1)$ is isomorphic to the infinite dihedral group

$$D_{\infty} = \langle \alpha, \beta \mid \alpha^2, \beta^2 \rangle.$$

2012/01/24