MA4J2 Exercise sheet 9.

Please let me know if any of the problems are unclear or have typos.

Exercise 9.1. [Not to be turned in.] Prove the following.

- The annulus $\mathbb A$ and the Möbius band $\mathbb M$ are the only I-bundles over S^1 , up to isomorphism.
- The torus \mathbb{T} and the Klein bottle \mathbb{K} are the only S^1 -bundles over S^1 , up to isomorphism.

Exercise 9.2. Suppose F is equipped with the discrete topology. Show any F-bundle map $p: T \to B$ is a covering map.

Exercise 9.3. Show the manifolds $S^1 \times S^2$, S^3 , and \mathbb{P}^3 are all S^1 -bundles over S^2 . Show they are non-isomorphic.

Exercise 9.4. Show the Hopf fibration on S^3 descends to give a Seifert fibered space structure for L(p,q). Prove the quotient orbifold $L(p,q)/S^1$ is isomorphic to S^2 or $S^2(p,p)$ as q=1 or $q\neq 1$. For the latter, compute the orbit invariants of the critical fibers.

Exercise 9.5. Show, for every $1 \le q \le p$ with gcd(p,q) = 1, there is a Seifert fibered structure on S^3 so that $S^3/S^1 = S^2(p,q)$. Compute the orbit invariants of the two critical fibers. [Challenge: Classify Seifert fibered structures on S^3 .]

Exercise 9.6. Classify properly embedded arcs in \mathbb{D}^2 , \mathbb{A}^2 , and \mathbb{M}^2 , up to proper isotopy.

Exercise 9.7. Suppose $k \in \mathbb{Z}$. Recall from class that $\sigma_k \colon S^1 \to \mathbb{T}^2$, given by $\sigma_k(e^{i\theta}) = (e^{ki\theta}, e^{i\theta})$, is a section of the product bundle $p \colon \mathbb{T}^2 \to S^1$. (Here $\mathbb{T} = S^1 \times S^1$ and p is projection to the second factor.) Show the following.

- For any section σ of p, there is a k so that σ is isotopic to σ_k .
- For any k, ℓ there is an isomorphism $F: \mathbb{T} \to \mathbb{T}$ so that $F \circ \sigma_k = \sigma_\ell$. Give F in coordinates.

Exercise 9.8. Carry out Exercise 9.7 for the bundle $p: \mathbb{K}^2 \to S^1$.

2012/03/06