1 Lecture 1

1.1 Manifolds

A goal of Topology is to classify closed (that is, compact, connected, without boundary) manifolds.

Definition. A (Topological) **Manifold** M^n is a Hausdorff, 2nd countable topological space in which every point $x \in M^n$ has a neighbourhood $U \subseteq M^n$ homeomorphic to \mathbb{R}^n , for a manifold without boundary, or homeomorphic to $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n | x_n \ge 0\}$, for a manifold with boundary.

1.2 Some Examples

1.2.1 n = 0

 \mathbb{R}^0 - a single point.

1.2.2 n = 1

Figure 1: \mathbb{S}^1 - the circle.

Definition. $S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$

 \mathbb{R}^1 is not compact. $\mathbb{I}=[0,1]\subseteq\mathbb{R}$ is not closed. (the boundary of $\mathbb{I},\,\partial\mathbb{I}=0,1,$ see Figure 2)

Figure 2: The semicircle is homeomorphic to \mathbb{S}^1 .

Definition. A map $f : M \mapsto N$ is a homeomorphism if f is bijective, continuous and has a continuous inverse.

Figure 3: A figure of 8.

The figure of eight curve (see Figure 3) is not a manifold. There is no neighbourhood of the centre point which is homeomorphic to \mathbb{R} . *Exercise* 1. (Hard)

Prove: $\mathbb{S}^1, [0, 1], [0, \infty], \mathbb{R}$ are the only connected 1-manifolds.

Here, S_g is the compact, connected orientable surface with g handles. We

Figure 4: A handle.

get a handle (Figure 4) by removing a disk \mathbb{D}^2 from T^2 . See Figure 5.

Figure 5: Creating a handle.

So we may draw \mathcal{S}_g as a sphere with g disks removed.

Example. g = 5

Example. N_c is the closed, non-orientable surface with c cross-caps. We get a cross-cap by taking S^2 , cutting out c disks and glueing on c copies of the mobius band. See Figure 6.

Figure 6: \mathbb{M}^2 .

Note: $\partial \mathbb{M}^2 = S^1$ Note: $\mathbb{A}^2 = annulus = S^1 \times \mathbb{I}$ has $\partial \mathbb{A}^2 - S^1 \sqcup S^1$ $\mathbb{A}^2 \cong \{x \in \mathbb{R}^2 : 1 < ||x|| \le 2\}$. See Figure 7.

Figure 7: Annulus.

1.2.4 n = 3

This is the topic of this class.

Recent work of Pevelman, Hamilton, Thurston (also Casson, Rubenstein, Manning...) proves that the homeomorphism problem in dimension *is* decidable. In dimensions 3 and below, the phrases "up to homeomorphism" and "up to diffeomorphism" are *equivalent* [Moies]. This is not true in higher dimensions.

1.2.5 n = 4

Impossible in the sense of Gödel & Turing (Markov, 1958).

1.3 Possible structures of manifolds

There are many possible structures we can put on manifolds.

- Topological TOP
- Piecewise linear PL
- DIFF smooth
- \mathbb{C}^{ω} real analytic
- \mathbb{C} analytic (in even dimensions)
- Geometric \leftarrow this course

Definition. $\mathbb{P}^n = \frac{\mathbb{S}^n}{\{\pm 1d\}} = \frac{\mathbb{S}^n}{x \sim (-x)}$

Figure 8: The Projective Plane.

See Figure 8

- \mathbb{T}^0 is a point
- $\mathbb{T}^1 \cong S^1$
- \mathbb{T}^2 is the torus we are most familiar with, see Figure 9
- $\mathbb{T}^3 \cong \mathbb{I}^3 \leftarrow unitcube = [0,1]^3$ Glue opposite sides by translation. See Figure 10.

Figure 9: \mathbb{T}^2

Figure 10: \mathbb{T}^3