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10 Lecture 10

In this lecture, we aim at classifying geodesics in the sphere S2 and in the
hyperbolic plane H2.

10.1 Geodesics in S2

We would like to classify geodesics in the sphere. Here is an outline to prove
that they are great circles.

Step 1 (Finding Isometries.). Firstly, we show that O(3) is a subgroup of
Isom(S2). To do this, we have to show that O(3) preserves S2 and to observe
that O(3) preserves the length element ds, where ds2 = dx2 + dy2 + dz2, thus
O(3) ≤ Isom(E3). If α is an element in O(3), then it preserves length in E3,
thus in particular it leaves invariant the integral

∫
γ
ds (see Figure 1).

Figure 1: Moving paths on S2 by a rotation α.

Step 2 (Choosing coordinates.). Rewrite ds in spherical coordinates. Introduc-
ing new parameters (r, θ, φ) to denote the distance from the origin, the angle
out of the xz plane and the angle from the z-axis, respectively, we can write
relations between Euclidean and spherical coordinates as follows (see Figure 2):

x = r cos θ sinφ

y = r sin θ sinφ

z = r cos θ

Computing dx, dy and dz in terms of dr, dθ and dφ we get

dx2 + dy2 + dz2 = dr2 + r2dφ2 + r2 sin2 φ dθ2. (1)

Along the sphere r ≡ 1 and so dr ≡ 0. Thus equation (1) becomes

dx2 + dy2 + dz2 = dφ2 + sin2 φ dθ2.
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Figure 2: Spherical coordinates.

Step 3 (Projecting to geodesic arcs.). We are ready to show that arcs of great
circles running from the south pole to the north pole of the sphere are geodesics.
Let γ : [0, 1]→ S2 be a path connecting the south pole S = (0, 0,−1) to a point
of S2 ∩ {xz plane} with x > 0 and assume γ to be injective. The idea is to
project γ to the path γ̄ as shown in Figure 3, in order to reduce the length.

Figure 3: Projecting on γ̄.

We have:

l(γ) =

∫
γ

√
dφ2 + sin2 φ dθ2 ≥

∫
γ

|dφ| =
∫
γ̄

|dφ| = l(γ̄)

so that γ̄ is a geodesic.

Step 4 (Moving geodesics around.). Using Step 1, conclude that any great circle
contained in an open hemisphere is a shortest path.

Step 5 (Nothing more to look for.). Finish the proof by showing that there are
no more isometries of the sphere. That is, show O(3) = Isom(S2).
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10.2 Geodesics in H2

Let H2 =
{

(x, y) ∈ R2
∣∣y > 0

}
denote the upper half plane equipped with the

element of length dsH = ds
y . We will switch between real and complex notation

if needed, writing (x, y) for the complex number z = x + iy and vice versa.
Figure 4 gives us already a first idea of the behaviour of the metric.

Figure 4: Hyperbolic metric on the upper halp plane.

Note that the inequalities shown in the picture cannot be turned into equalities.
This is because horizontal lines are not geodesics. We wish to classify geodesics
in H2 in a similar fashion as what we have done for the sphere. However, we
will proceed in a slightly different way, so that we will not cover every step and
not in the same order. Let’s start with:

Step 6 (Projecting to geodesic arcs). As before, we have to look at the metric
and find “nice” paths to project to. The length element squared is

ds2
H =

ds2

y2
=
dx2 + dy2

y2
.

We try making dx = 0, that is considering vertical paths. Let γ : [0, 1]→ H2 be
any path (again, γ is assumed to be an injective map) that starts at i = (0, 1)
and ends at Ri for some R > 1. If γ̄ is the path shown in Figure 5 having the
same endpoints as γ,
then:

l(γ) =

∫
γ

dsH =

∫
γ

√
dx2 + dy2

y
≥
∫
γ̄

|dy|
y

= l(γ̄).

Hence the open semi-line iR+ is a geodesic.

Step 7 (Finding isometries.). Now that we have found one geodesic, we want
to find some elements in Isom(H2) that will allow us to move it around, getting
all the other geodesics. Let Ta : H2 → H2 be the translation Ta(z) = z + a (or,
equivalently, Ta(x, y) = (x+a, y)) where a ∈ R. Then Ta is an isometry. For its
derivative is equal to the identity, so it preserves lengths. This tells us already
that all vertical lines are geodesics.
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Figure 5: Projection in H2.

Consider now the function Sλ(x, y) = (x, λy); is it an isometry? Let’s check
how its derivative acts on the length element: set (u, v) = Sλ(x, y) so that
(du, dv) = (dx, λdy) and compute

du2 + dv2

v2
=
dx2 + λ2dy2

λ2y2
6= ds2

H.

So Sλ is not an isometry. We can modify it in a suitable way. Take instead
S̃λ(x, y) = (λx, λy) (in complex notation S̃λ(z) = λz). The same computation
leads to:

du2 + dv2

v2
=
λ2dx2 + λ2dy2

λ2y2
= ds2

H

as desired. So we have found a family of isometries S̃λ. All the isometries we
have found so far move vertical lines to vertical lines, so we are not done yet.

10.3 Further remarks

Now that we know that vertical lines are geodesic with respect to the hyperbolic
metric, we are ready to find new isometries and, consequently, new geodesics.
We have seen that both translations and dilations by real numbers are isome-
tries. Also, they move vertical lines to vertical lines.
Observe the reflection R : z 7→ −z̄ about the imaginary semi-line is an isome-
try. So is reflection in any vertical line, as this can be obtained by composition
as Rk = Tk ◦ R ◦ T−k, giving the map z 7→ 2k − z̄. Unfortunately, the class
of reflections about vertical lines still preserves vertical lines; moreover, these
reflections are orientation reversing. Let’s put them aside for a moment, and
look at the map I : z 7→ 1/z̄, namely inversion with respect to the unit circle.
Writing this function in real coordinates we get

(x, y) 7→
(

x

x2 + y2
,

y

x2 + y2

)
.

Computing the differential we can check that the map is actually an isometry.
For, switch to polar coordinates by setting x = r cos θ and y = r sin θ so that
dx = dr cos θ − r sin θdθ and dy = dr sin θ + r cos θdθ. the length element can
be thus expressed as

dx2 + dy2

y2
=
dr2 + r2dθ2

r2 sin2 θ
.
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Writing the inversion as (x, y) 7→ (r−1 cos θ, r−1 sin θ) = (u, v), we have to
compute the new length element given by (du2 + dv2)/v2. We have

du =
−r sin θdθ − dr cos θ

r2

and

dv =
cos θdθr − dr sin θ

r2
.

Therefore the length element after inverting by I is

du2 + dv2

v2
=
dr2 + r2dθ2

r2 sin2 θ
=
dx2 + dy2

y2

thus we proved that the inversion is actually an isometry. As before, conve-
niently conjugating I with dilations and translations gives rise to inversions
about circles with any centre on the real line and any positive radius. Note
that all of these inversions are again orientation reversing: in particular, the
composition of an inversion with a reflection in a line is an orientation preserv-
ing isometry. For instance, the composition I ◦ R is the map z 7→ −1/z. We
also note that a vertical line is sent to a semi-circle orthogonally meeting the
line {z | =z = 0}. Thus, we have found that vertical lines and semi-circle with
centre on the real line are geodesics in H2. Another way of thinking at them is
consider vertical lines as circles passing to the point at infinity.
It is possible to prove that the (orientation preserving) isometries that we have
found generate the whole group Isom+(H2), the other isometries being obtain-
able by compositions. More precisely, the group of orientation preserving isome-
tries of the hyperbolic plane can be identified with the group

PSL(2,R) = SL(2,R)/± I

under the monomorphism

PSL(2,R)→ Isom+(H2),

(
a b
c d

)
7→
[
z 7→ az + b

cz + d

]
Note that we take the projectivised group in order to avoid the ambiguity in
choosing a sign for the matrix. Finally, we observe that for any two distinct
points p 6= q ∈ H2 there exists a unique geodesic passing through them (i.e. H2

is a geodesic space).
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