11 Lecture 11

Last time we began a discussion of the geometry of \mathbb{H}^2 .

Exercise 11.1.

- 1. Read Scott's treatment of \mathbb{H}^2 .
- 2. Carry out details of the plan given in Lecture 10; as done for \mathbb{S}^2 , classify the isometries and geodesics for \mathbb{H}^2 . Show that $\operatorname{Isom}^+(\mathbb{H}^2) \cong PSL(2, \mathbb{R}^2)$, where $\operatorname{Isom}^+(\mathbb{H}^2)$ are the orientation preserving isometries of \mathbb{H}^2 .
- 3. Show that $(\mathbb{H}, \frac{ds}{y})$ is isometric to $(\mathbb{D}, \frac{2ds}{1-r^2})$.

Also see chapters one and two in Professor Series' notes for MA448 (Hyperbolic Geometry).

Recall: A 2-orbifold is a "nice" topological space locally modelled on \mathbb{R}^2/G , where G is a discrete subgroup of O(2). We call G the *local group*.

Figure 1: Local pictures for orbifolds: $\mathbb{R}^2/\langle 1 \rangle$ and $\mathbb{R}^2/\langle \text{reflection} \rangle$

Figure 2: \mathbb{R}^2/C_n with cone point of order n and \mathbb{R}^2/D_{2n} with a corner reflection of order n

Figure 3: $\mathbb{R}^2_+/\langle 1 \rangle$ and $\mathbb{R}^2_+/\mathbb{Z}_2$

See page 442 of Scott's article for a formal definition of orbifold, including the overlap condition.

Example 11.2. $\mathbb{S}^2(p,q,r)$ is the orbifold with underlying surface homeomorphic to \mathbb{S}^2 and having three cone points of order p, q and r respectively.

Figure 4: \mathbb{S}^2 with cone points of order p, q and r

11.1 Orbifold Euler Characteristic

We wish to use the local group G giving the model to define a new Euler characteristic.

Definition 11.3. Given F an orbifold, triangulate F so that cone points and corners are among the vertices and so that the mirror boundary lies in the 1-skeleton. We decree the following:

- 1. A vertex is worth +1.
- 2. Cone points of order n are worth $\frac{1}{n}$.
- 3. Corner reflectors of order n are worth $\frac{1}{2n}$.
- 4. Half-mirrored corners are worth $\frac{1}{2}$.
- 5. Mirrored edges are worth $-\frac{1}{2}$.
- 6. Faces are worth +1.

Example 11.4.

$$\chi^{\text{orb}}(\mathbb{S}^2(p,q,r)) = \frac{1}{p} + \frac{1}{q} + \frac{1}{r} - 3 + 2 = \frac{1}{p} + \frac{1}{q} + \frac{1}{r} - 1$$

Figure 5: $\mathbb{S}^2(p,q,r)$

Example 11.5.

$$\chi^{\text{orb}}(\mathbb{D}^2(\bar{p},\bar{q},\bar{r})) = \frac{1}{2p} + \frac{1}{2q} + \frac{1}{2r} - \frac{3}{2} + 1 = \frac{1}{2}\left(\frac{1}{p} + \frac{1}{q} + \frac{1}{r}\right) - \frac{1}{2} = \frac{1}{2}\left(\frac{1}{p} + \frac{1}{q} + \frac{1}{r} - 1\right)$$

Two copies of $\mathbb{D}^2(\bar{p}, \bar{q}, \bar{r})$ glued along their boundary give $\mathbb{S}^2(p, q, r)$.

Figure 6: $\mathbb{D}^2(\bar{p}, \bar{q}, \bar{r}))$

Remark 11.6. There is a degree two orbifold covering map

$$\mathbb{S}^2(p,q,r) \xrightarrow{\times 2} \mathbb{D}^2(\bar{p},\bar{q},\bar{r})$$

so we expect that $\chi^{\operatorname{orb}}(\mathbb{S}^2(p,q,r)) = 2 \cdot \chi^{\operatorname{orb}}(\mathbb{D}^2(\bar{p},\bar{q},\bar{r})).$

Exercise 11.7. Classify all connected 2-orbifolds F with $\chi^{\text{orb}}(F) > 0$. (More: do the same for $\chi^{\text{orb}}(F) = 0$. In both cases you may restrict to orbifolds without boundary and/or mirror boundary.)

Remark 11.8. $\chi^{\operatorname{orb}}(\mathbb{S}^2(p,q,r))$ has sign

- 1. positive $\iff \frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1.$
- 2. zero $\iff \frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1.$
- 3. negative $\iff \frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1.$

This corresponds to the fact that triangles in \mathbb{S}^2 , \mathbb{E}^2 and \mathbb{H}^2 have angle sum greater than, equal to and less than π respectively.

Exercise 11.9. Define, for $x \in F$, $\operatorname{ord}(x) = \operatorname{order} of$ the point x. Show that if F has no mirrors,

$$\chi^{\operatorname{orb}}(F) = \chi(|F|) - \sum_{x \in F} \left(1 - \frac{1}{\operatorname{ord}(x)}\right)$$

where $\chi(|F|)$ is the usual Euler characteristic of the underlying space, forgetting the orbifold structure.

11.2 Orbifold Covers

Suppose that $H \leq G < O(2)$. Then there is a quotient map

$$H \cdot x \in \mathbb{R}^2/H$$

$$\bigcup_{x \in \mathbb{R}^2/G}$$

Exercise 11.10. Check that this is well defined.

Figure 7 shows the lattice of two-fold covers for $G = D_8 = \text{Sym}(\Box)$:

Saul Schleimer	MA4J2
Joe Smyth	19th Jan 2011

Figure 7: Orbifold covers for the group D_8 . All covers shown have degree two.