14 Lecture 14

14.1 Two-orbifolds

Definition 14.1. If F is a connected 2-orbifold that is good, then we define

$$\pi_1^{orb}(F) = \operatorname{Deck}(\rho \colon F \to F)$$

Where $\rho \colon \tilde{F} \to F$ is the universal cover.

Example 14.2. Consider $F = S^1 \times I(\overline{2})$

In terms of co-ordinates:

$$\rho \colon \mathbb{R} \times [-1, +1] \to F$$
$$(t, x) \to (e^{it}, |x|)$$

So the deck group $\operatorname{Deck}(\rho) \cong \mathbb{Z} \times \mathbb{Z}_2$. So [Check] for any $g \in \operatorname{Deck}(\rho), \rho \circ g = \rho$. **Exercise 14.3.** If $\rho: E \to F$ is an orbifold cover then

 $\pi_1^{\text{orb}}(E) < \pi_1^{\text{orb}}(F) \text{ and } \deg(\rho) = [\pi_1^{\text{orb}}(F) : \pi_1^{\text{orb}}(E)].$

Example 14.4. Consider H, the half-mirrored hexagon, shown below:

Figure 1: Half-mirrored hexagon, the red edges represent mirrored edges and the black edges represent the regular boundary

Claim 1. The orbifold fundamental group $\pi_1^{\text{orb}}(H)$ is isomorphic to $\mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2 \cong \langle a, b, c \mid a^2, b^2, c^2 \rangle$

Example 14.5. Consider *S*, the half-mirrored square, shown below:

Figure 2: Half-mirrored square, the red edges represent mirrored edges and the black edges represent the regular boundary

Claim 2. The orbifold fundamental group $\pi_1^{\text{orb}}(S)$ is isomorphic to $\mathbb{Z}_2 * \mathbb{Z}_2$ which is isomorphic to $\mathbb{D}_{\infty} \cong \langle a, b, | a^2, b^2 \rangle$

Saul Schleimer	MA4J2
Man Hoe Nguy	9th Feb 2012

Proof. We have the following covering map:

$$\rho \colon \mathbb{R} \times I \to S$$
$$(t, x) \to (\mid t \mod 1 \mid, x)$$

Q.E.D

Scott tells us that the orbifold fundamental group can be computed directly via the Seifert-van-Kampen Theorem

Theorem 14.6 (Seifert-van-Kampen). Suppose $X = A \cup B$ and $C = A \cap B$ are path connected spaces. Choose $x \in C$ to be the base point for all computations. Let $f: C \to A$ and $g: C \to B$ be the inclusion maps. Then:

$$\pi_1(X) \cong \frac{\pi_1(A) * \pi_1(B)}{\langle \langle f_*(\omega) \cdot g_*(\omega^{-1}) \mid \omega \in \pi_1(c) \rangle \rangle}$$

Note: We are really imposing the new relation $f_*(\omega) = g_*(\omega)$.

In the same way, we can decompose F(a 2-orbifold) along a compact 1-orbifold and compute fundamental groups. We first review the list of compact 1-orbifolds.

Saul Schleimer Man Hoe Nguy				MA4J2 9th Feb 2012
Review:				
X:	S^1	Ι	$I(\overline{2})$	$I(\overline{2},\overline{2})$
Picture:	\bigcirc	L1		
$\pi_1^{\operatorname{orb}}(X)$:	\mathbb{Z}	1	\mathbb{Z}_2	D_{∞}
$\tilde{X}($ universal cover $)$:	\mathbb{R}^1	Ι	Ι	\mathbb{R}

Recall: The infinite dihedral group D_{∞} has presentation $\langle a, b \mid a^2, b^2 \rangle$ and is isomorphic to $\mathbb{Z}_2 * \mathbb{Z}_2$

14.2 Computations using Seifert-van-Kampen

Example 14.7. Let $F = S^1 \times I(\overline{2})$ We place a vertex on the mirror boundary. Let U_0 be a small neighbourhood of the vertex. Let U_1 be a small neighbourhood of the mirror boundary. Define $U_2 = F \min(U_0 \cup U_1)$

Note that $U_2 \cap U_1 \cong I$ so $\pi_1^{\text{orb}}(U_2 \cup U_1) = \mathbb{Z} * \mathbb{Z}_2$

Fixing, notation we write $\pi_1^{\text{orb}}(U_2 \cup U_1) \cong \langle t, r \mid r^2 \rangle$

Since $U_0 \cap (U_1 \cap U_2) \cong I(\overline{2}, \overline{2})$ we find that $\pi_1^{\operatorname{orb}}(F) \cong (\mathbb{Z} * \mathbb{Z}_2) \underset{D_{\infty}}{*} \mathbb{Z}_2$

Fixing notation, we write $D_{\infty} = \langle a, b \mid a^2, b^2 \rangle$ and $\mathbb{Z} * \mathbb{Z}_2 = \langle t, r \mid r^2 \rangle$. Let $\mathbb{Z}_2 = \langle s \mid s^2 \rangle$. Then the two inclusion maps f, g give:

$$f_{\star} : a \to r$$
$$b \to trt^{-1}$$
$$g_{\star} : a \to s$$
$$b \to s.$$

Hence, $\pi_1^{orb}(F) = \langle r, s, t \mid r^2, s^2, t^2 \rangle \cong \langle r, t \mid r^2, r^{-1}trt^{-1} \rangle \cong \mathbb{Z} * \mathbb{Z}_2$. This agrees with the orbifold fundamental group computed above.