Saul Schleimer	MA4J2
Dintle Kagiso	10 Feb 2012

15 Lecture 15

We have several more examples of computing orbifold fundamental groups $\pi_1^{orb}(F)$. Example 15.1. We compute the group for $F = D^2(\overline{3}, \overline{3}, \overline{3})$.

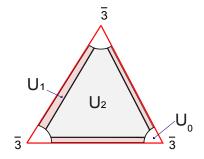


Figure 1: The orbifold decomposed into pieces.

Let U_0 be a small regular neighborhood of the corner reflectors. Let U_1 be an even smaller regular neighborhood of the remains of the mirror boundary.

Let $U_2 = \overline{F - (U_1 \cup U_0)}$. Notice that $\pi_1^{orb}(U_2) = \{\mathbf{1}\}$. The components of U_1 each have $\pi_1^{orb} \cong \mathbb{Z}_2$. For U_0 , each component has $\pi_1^{orb} \cong D_6 \cong \langle a, b \mid a^2, b^2, (ab)^3 \rangle$. Recall that D_6 is symmetry group of equilateral triangle.

<u>Thus:</u> $U_1 \cup U_2$ is the half mirrored hexagon, H . The orbifold fundamental

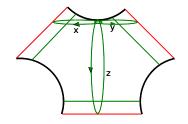


Figure 2: The half mirrored hexagon.

group of H is $\pi_1^{orb}(H)$ equal to

 $\mathbb{Z}_2 \quad * \quad \mathbb{Z}_2 \quad * \quad \mathbb{Z}_2 \quad \cong \quad \left\langle x, y, z \mid x^2, y^2, z^2 \right\rangle.$

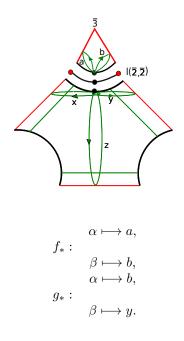
Let A be a component of U_0 . Let $H = U_1 \cup U_2$. We must glue A to H along the relevant copy of $I(\overline{2},\overline{2})$. van Kampen Theorem tells us that $\pi_1^{orb}\left(A \bigcup_{I(\overline{2},\overline{2})} (H)\right)$ is the group

$$(\mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2) *_{D_\infty} D_6$$

If $D_{\infty} = \left\langle \alpha, \beta \mid \alpha^2, \beta^2 \right\rangle$ then we have

$$\begin{array}{rccc} f: & I\left(\overline{2},\overline{2}\right) & \longrightarrow & \mathcal{A}, \\ g: & I\left(\overline{2},\overline{2}\right) & \longrightarrow & H, \end{array}$$

Saul Schleimer	MA4J2
Dintle Kagiso	10 Feb 2012



Thus:

$$\pi_{1}^{orb}\left(A \cup H\right) = \left\langle x, y, z, a, b \mid x^{2}, y^{2}, z^{2}, a^{2}, b^{2}, \left(ab\right)^{3}, ax^{-1}, by^{-1}\right\rangle.$$

Remark 15.2. There are more relations; for example, $f_*(\alpha\beta) g_*(\beta^{-1}\alpha^{-1})$ giving $aby^{-1}x^{-1}$. These follow from the relations ax^{-1} and by^{-1} .

Exercise 15.3. Check this.

This group can now be written as

$$\pi_1^{orb}\left(A \cup H\right) \cong \left\langle x, y, z \mid x^2, y^2, z^2, \left(xy\right)^3 \right\rangle.$$

Glue on the remaining two corners to get

$$\pi_{1}^{orb}\left(\mathbb{D}^{2}\left(\bar{3},\bar{3},\bar{3}\right)\right) = \left\langle x,y,z \mid x^{2},y^{2},z^{2},(xy)^{3},(yz)^{3},(zx)^{3}\right\rangle.$$

Exercise 15.4. We now carry out the same exercise for $F = S^2(3,3,3)$ Cut off neighborhoods of the 3 corners. As in (Fig: 3) we have;

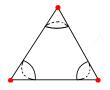


Figure 3: $S^{2}(3,3,3)$ is the 2-sphere with 3 cone points.

In (Fig: 4) X is $\mathbb{D}^2 - \{2 \text{ disks}\}$. A, B and Care $\mathbb{R}^3/\mathbb{Z}_3$. For each of these the local group is $C_3 \cong \mathbb{Z}_3$. Also $\pi_1(D) = \mathbb{F}_2 \cong \mathbb{Z} \times \mathbb{Z}$.

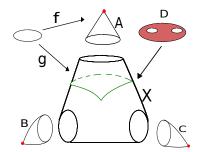


Figure 4: Pair of pants with 3 cones attached.

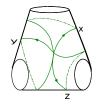


Figure 5: Pair of pants with 3 generators.

$$\pi_1(X) \cong \langle x, y, z \mid xyz \rangle \cong \langle x, y \mid \rangle.$$

So:

Saul Schleimer

Dintle Kagiso

$$\begin{aligned} \pi_1^{orb} \left(S^2 \left(3, 3, 3 \right) \right) &\cong & \left\langle x, y, z \mid xyz, x^3, y^3, z^3 \right\rangle \\ &\cong & \left\langle x, y \mid x^3, y^3, (xy)^3 \right\rangle. \end{aligned}$$

Since xyz = 1 we have $z = y^{-1}x^{-1}$. So if $z^3 = 1$ then $(y^{-1}x^{-1})^3 = 1$ so $(xy)^3 = 1$.

Exercise 15.5. Compute $\pi_1^{orb}(S^2(p,q))$ and $\pi_1^{orb}(D^2(\overline{p},\overline{q}))$ Show that if $p \neq q$ and gcd (p,q) = 1 then these groups are trivial for $(S^2(p,q))$ or \mathbb{Z}_2 for $(\mathbb{D}^2(\overline{p},\overline{q}))$.

Exercise 15.6. Using van Kampen Theorem compute π^{orb} for $F = S^2(p,q,r)$ and $D^2(\bar{p},\bar{q},\bar{r})$.

Show that the covering,

$$\rho: S^2\left(p, q, r\right) \longrightarrow \mathbb{D}^2\left(\overline{p}, \overline{q}, \overline{r}\right)$$

gives a map

$$\rho_{*}:\pi_{1}^{orb}\left(S^{2}\left(p,q,r\right)\right)\longrightarrow\pi_{1}^{orb}\left(D^{2}\left(\overline{p},\overline{q},\overline{r}\right)\right)$$

and the image has index two.

15.1 Seifert Fibered Spaces

There are a special class of 3-manifolds that

a) decompose as a *nice* union of disjoint circles or *equivalently*

b) are *circles bundles* over 2-orbifolds.

Saul Schleimer	MA4J2
Dintle Kagiso	10 Feb 2012

Exercise 15.7. Consider $S^1 \times F^2$ where F is a surface. This decomposes as a disjoint union, namely $\{S^1 \times \{x\} \mid x \in F\}$. This, then is the *trivial* S^1 bundle.

Exercise 15.8. Suppose F is a surface. Let UTF be the unit tangent bundle over F. This is a "twisted circle bundle"

Exercise 15.9. What 3-manifold is $UT(S^2)$?