Saul Schleimer	MA4J2
Callum Duffy	16th Feb 2011

17 Lecture 17

Continuing our discussion from last time, define

$$K = I \times \mathbb{D}^2/(1, z) \ (0, \overline{z}).$$

Note we can orient the circles of K by increasing direction of the I factor, but K itself is not orientable. This is a higher dimensional version of the Möbius band.

$$\mathbb{M} = I \times B_1/(1,t) \ (0,-t)$$
 where $B^1 = [-1,1]$

Call K the solid Klein Bottle. Note that $\partial K = \mathbb{K}^2$ and that T(p,q) and K are p-fold covered and 2-fold covered respectively by T(1,0), by a map sending circles to circles.

Definition 17.1. We say $M^3 = \sqcup S^1$ equipped with partition into circles is a *Seifert fibred space* if for every circle C in the partition, there exists an open neighbourhood $U \subset M$ of C such that U is homeomorphic (preserving cricles) to either T(p,q) or K.

Definition 17.2. We call the circles of the partition of M fibres. We say that Seifert spaces M and N are isomorphic if there is a homeomorphism $f: M \to N$ that send fibres to fibres.

Exercise 17.3. Show that T(p,q) is isomorphic to T(p',q') if and only if p = p' and q = q' (or $q = \pm q' \pmod{p}$) if we allow orientation to be reversed).

So q/p is a complete invariant for T(p,q).

Remark 17.4. If $C \subseteq \partial M$ then any small fibred neighbourhood for C is isomorphic to

$$I \times \mathbb{D}^2/(1,z) \ (0,z).$$

Exercise 17.5. Suppose F^2 is a surface, then $S^1 \times F$ is a Seifert fibred surface with partition

$$\{S^1 \times \{x\} : x \in F\}.$$

We claim that if F has genus greater than or equal to 2, then this is the unique Seifert fibred structure on $M = S^1 \times F$ (up to isomorphism).

Remark 17.6. This does not hold when $M = S^1 \times S^2$ ie. $F = S^2$.

Exercise 17.7 (Difficult). \mathbb{R}^3 can be partitioned into circles but \mathbb{R}^3 does not admit a Seifert fibred structure.

Definition 17.8. If $C \subset M$ has a neighbourhood isomorphic to T(1,0) we call C a regular fibre. If not call C a critical fibre. Finally, if all sufficiently small neighbourhoods of C are isomorphic to T(p,q) we say q/p is the invariant of C.

Note that M^3 and all fibres must be oriented to define the invariant. Note also that $S^1 \times F$ has no critical fibres.

Example 17.9. Let

$$\mathbb{T}^2 = I^2/(x,0) \ (x,1), (0,y) \ (1,y).$$

Recall $h: \mathbb{T}^2 \to \mathbb{T}^2$ was given by $(x, y) \mapsto (1 - x, 1 - y)$, so define

$$M = I \times \mathbb{T}^2/(1,z) \ (1,h(z)).$$

We claim that M has four critical fibres. Consider the torus $\{\frac{1}{2} \times \mathbb{T}^2\}$ This can be divided as follows. Consider the planes $x = \frac{1}{4} y = \frac{1}{4}$ and $x = \frac{3}{4} y = \frac{3}{4}$. These cut $M = I \times \mathbb{T}^2/h$ into four copies of T(2, 1).

Remark 17.10. We may also fibre $M = I \times \mathbb{T}^2/h$ by horizontal circles all parallel of the *x*-axis. This Seifert fibred structure has no critical fibres, hence the are not isomorphic.