2 Lecture 2

Let M^n be a triangulated n-dimensional manifold (i.e M^n is given as a union of simplices) then we define the Euler characteristic to be

$$\chi(M) = \sum_{k=0}^{\infty} (-1)^k (\# \text{ of simplices})$$

Example 2.1. If F is a surface with

- v-vertices
- \bullet *e*-edges
- \bullet f-faces

then $\chi(F) = v - e + f$.

Example 2.2. If we triangulate S^1 as the boundary of a triangle as in Figure 1 then $\chi(S^1) = 3 - 3 = 0$.

Figure 1: S^1

Example 2.3. If we triangulate S^2 as in Figure 2, then $\chi(S^2) = 4 - 6 + 4 = 2$

Figure 2: S^2

Exercise 2.4. Show the following:

- $\chi(S^n) = 1 + (-1)^n = \begin{cases} 2 & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$
- $\chi(S_g) = 2 2g$
- $\chi(N_c) = 2 c$.

Theorem 2.5 (Classification of Surfaces). If F and G are compact connected 2-manifolds then F and G are homeomorphic if and only if F and G have the same

- ullet orientability
- Euler characteristic
- number of boundary components.

That is the 3 invariants; orientability, Euler characteristic and number of boundary components classify surfaces.

Exercise 2.6. Let F be the surface given as in Figure 3

Figure 3: The surface ${\cal F}$

Show that F is homeomorphic to a handle given by the 2-torus with an open disk removed as shown in Figure 4.

Figure 4: A handle $\mathbb{T}^2 - \mathbb{D}^{\circ}$

Exercise 2.7. Let G be the surface given in Figure 5, given by the quotient of an octagon.

Figure 5: The surface G

Show that G is homeomorphic to S_2 as shown in Figure 6.

Figure 6: S_2

2.1 Orientability

Definition 2.8 (1). Let M be a smooth 2-dimensional manifold. We say M is orientable if there exists a smooth atlas $\{(\varphi_U, U)\}$ such that if $U \cap V \neq \emptyset$ then $\varphi_V \circ \varphi_U^{-1}$ preserves the orientation of \mathbb{R}^2 . If no such smooth atlas exists we say M is non-orientable.

Definition 2.9 (2). Let F be a triangulated surface. We say that F is *orientable* if you can cyclically order the vertices of all triangles such that edge glueings reverse order.

Example 2.10. Give \mathbb{T}^2 the orientation as in Definition (2), as shown in Figure 7.

Figure 7: An orientation of \mathbb{T}^2 : a < b < c < a and 1 < 2 < 3 < 1.

To check the definition holds we consider the edges as shown in Figure 8 and check to see they disagree.

Figure 8: Edges of \mathbb{T}^2 with orientation.

Example 2.11. Consider the Möbius band with the orientation given in Figure 9:

However we have agreement on an edge as shown in Figure 10.

Hence this triangulation does not prove the Möbius band is orientable.

Figure 9: Möbius band with orientation: a < b < c < a.

Figure 10: An edge on the Mobium band with agreement.

Remark 2.12. In fact no triangulation for the Möbius band will work hence it is non-orientable, but showing this would be difficult. So to show non-orientability we make use of the following theorem.

Theorem 2.13. A surface F is non-orientable if and only if F contains a Möbius band.

Exercise 2.14. Show that the above definitions of orientability are equivalent. (Warning: $(1) \implies (2)$ is hard).

2.2 Double

Definition 2.15. Suppose that M is a manifold with boundary. Let $M_i = M \times \{i\}$ for i = 0, 1. Define the *double* of M to be

$$D(M) = M_0 \sqcup M_1 / \sim (x, 0) \sim (x, 1) \Leftrightarrow x \in \partial M.$$

Example 2.16. S^2 and \mathbb{T}^2 can be realised as doubles as shown in Figure 11 and Figure 12 respectively.

Figure 11: $S^2 = D(\mathbb{D}^2)$.

Exercise 2.17. Determine which of S_g and N_c can be realised as doubles.

Figure 12: $\mathbb{T}^2 = D(\mathbb{A})$.

Remark 2.18. Suppose M is (a) "a nice union" or (b) "self glueing" as depicted below, then the properties given in Figure 13 hold for the Euler Characteristic.

Figure 13: Manifolds with "nice union" and "self glueing".

2.3 Metric Spaces

Definition 2.19.

- A metric space (X, d_X) is *complete* if every Cauchy sequence in X converges in X.
- A function $f: X \to X$ is an *isometry* if for all $x, y \in X$, $d_X(x, y) = d_X(f(x), f(y))$. Let Isom(X) denote the group $\{f: X \to X \mid f \text{ is an isometry}\}$.
- We say X is homogeneous if for all $x, y \in X$ there exists $f \in \text{Isom}(X)$ such that f(x) = y.
- We say X is *locally homogeneous* if for all $x, y \in X$ there exists open neighbourhoods $U, V \subseteq X$ and an isometry $f: (U, x) \to (V, y)$.

Remark 2.20. It is easy to see that if a metric space is homogeneous, then it is locally homogeneous.

Example 2.21. $\mathbb{E}^n = (\mathbb{R}^n, d_{\mathbb{E}})$ (where $d_{\mathbb{E}}$ is the standard Euclidean metric) is homogeneous.

Example 2.22. Consider the open Möbius band as given in Figure 14, that is

$$\mathbb{M} = \mathbb{I} \times \mathbb{R}/(1, y) \sim (0, 1 - y).$$

Note that \mathbb{M} is locally homogeneous; if x, y are points of \mathbb{M} then the disks of radius 1/2 about x and about y are isometric. However, \mathbb{M} is not homogeneous as no isometry can move the core curve $\mathbb{I} \times \{0\}$ off of itself.

Figure 14: \mathbb{M} given as a quotient space.

Exercise 2.23. Check $\text{Isom}(\mathbb{M}) \cong S^1 \rtimes \mathbb{Z}/2\mathbb{Z}$.

Theorem 2.24 (Singer). If M is a complete, locally homogeneous metric space then it's universal cover \tilde{M} is homogeneous