
Saul Schleimer
Callum Duffy

MA4J2
12th Jan 2011

2 Lecture 2

Let Mn be a triangulated n-dimensional manifold (i.e Mn is given as a union
of simplices) then we define the Euler characteristic to be

χ(M) =

∞∑
k=0

(−1)k(# of simplices)

.

Example 2.1. If F is a surface with

• v-vertices

• e-edges

• f -faces

then χ(F ) = v − e+ f .

Example 2.2. If we triangulate S1 as the boundary of a triangle as in Figure 1
then χ(S1) = 3− 3 = 0.

Figure 1: S1

Example 2.3. If we triangulate S2 as in Figure 2, then χ(S2) = 4− 6 + 4 = 2

Figure 2: S2

Exercise 2.4. Show the following:

• χ(Sn) = 1 + (−1)n =

{
2 if n is even
0 if n is odd

• χ(Sg) = 2− 2g

• χ(Nc) = 2− c.

Theorem 2.5 (Classification of Surfaces). If F and G are compact connected
2-manifolds then F and G are homeomorphic if and only if F and G have the
same
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• orientability

• Euler characteristic

• number of boundary components.

That is the 3 invariants; orientability, Euler characteristic and number of
boundary components classify surfaces.

Exercise 2.6. Let F be the surface given as in Figure 3

Figure 3: The surface F

Show that F is homeomorphic to a handle given by the 2-torus with an open
disk removed as shown in Figure 4.

Figure 4: A handle T2 − D◦

Exercise 2.7. Let G be the surface given in Figure 5, given by the quotient of
an octagon.

Figure 5: The surface G

Show that G is homeomorphic to S2 as shown in Figure 6.
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Figure 6: S2

2.1 Orientability

Definition 2.8 (1). Let M be a smooth 2-dimensional manifold. We say M is
orientable if there exists a smooth atlas {(ϕU , U)} such that if U ∩ V 6= ∅ then
ϕV ◦ ϕ−1U preserves the orientation of R2. If no such smooth atlas exists we say
M is non-orientable.

Definition 2.9 (2). Let F be a triangulated surface. We say that F is orientable
if you can cyclically order the vertices of all triangles such that edge glueings
reverse order.

Example 2.10. Give T2 the orientation as in Definition (2), as shown in Fig-
ure 7.

Figure 7: An orientation of T2: a < b < c < a and 1 < 2 < 3 < 1.

To check the definition holds we consider the edges as shown in Figure 8 and
check to see they disagree.

(a) (b) (c)

Figure 8: Edges of T2 with orientation.

Example 2.11. Consider the Möbius band with the orientation given in Fig-
ure 9:

However we have agreement on an edge as shown in Figure 10.

Hence this triangulation does not prove the Möbius band is orientable.
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Figure 9: Möbius band with orientation: a < b < c < a.

Figure 10: An edge on the M obium band with agreement.

Remark 2.12. In fact no triangulation for the Möbius band will work hence it is
non-orientable, but showing this would be difficult. So to show non-orientability
we make use of the following theorem.

Theorem 2.13. A surface F is non-orientable if and only if F contains a
Möbius band.

Exercise 2.14. Show that the above definitions of orientability are equivalent.
(Warning: (1) =⇒ (2) is hard).

2.2 Double

Definition 2.15. Suppose that M is a manifold with boundary. Let Mi =
M × {i} for i = 0, 1. Define the double of M to be

D(M) = M0 tM1/ ∼ (x, 0) ∼ (x, 1)⇔ x ∈ ∂M.

Example 2.16. S2andT2 can be realised as doubles as shown in Figure 11 and
Figure 12 respectively.

Figure 11: S2 = D(D2).

Exercise 2.17. Determine which of Sg and Nc can be realised as doubles.
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Figure 12: T2 = D(A).

Remark 2.18. Suppose M is (a) “a nice union” or (b) “self glueing” as depicted
below, then the properties given in Figure 13 hold for the Euler Characteristic.

(a) χ(M) = χ(A) + χ(B)− χ(C) (b) χ(M) = χ(A)− χ(C)

Figure 13: Manifolds with “nice union” and “self glueing”.

2.3 Metric Spaces

Definition 2.19.

• A metric space (X, dX) is complete if every Cauchy sequence in X con-
verges in X.

• A function f : X → X is an isometry if for all x, y ∈ X, dX(x, y) =
dX(f(x), f(y)). Let Isom(X) denote the group {f : X → X | f is an isometry}.

• We say X is homogeneous if for all x, y ∈ X there exists f ∈ Isom(X) such
that f(x) = y.

• We say X is locally homogeneous if for all x, y ∈ X there exists open
neighbourhoods U, V ⊆ X and an isometry f : (U, x)→ (V, y).

Remark 2.20. It is easy to see that if a metric space is homogeneous, then it
is locally homogeneous.

Example 2.21. En = (Rn, dE) (where dE is the standard Euclidean metric) is
homogeneous.

Example 2.22. Consider the open Möbius band as given in Figure 14, that is

M = I× R/(1, y) ∼ (0, 1− y).

Note that M is locally homogeneous; if x, y are points of M then the disks of
radius 1/2 about x and about y are isometric. However, M is not homogeneous
as no isometry can move the core curve I× {0} off of itself.
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Figure 14: M given as a quotient space.

Exercise 2.23. Check Isom(M) ∼= S1 o Z/2Z.

Theorem 2.24 (Singer). If M is a complete, locally homogeneous metric space
then it’s universal cover M̃ is homogeneous
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