20 Lecture 20

Recall: We say M, N are isomorphic Seifert fibered spaces if there is a homeomorphism $f: M \to N$ that sends fibers to fibers.

Thus: M, N have the same critical fibers with the same orbit invariants (p, g) for each critical fiber $C_i \subseteq M$.

The notation M/S^1 is suggestive of the existence of an S^1 -action on M. We then take the quotient to get the base orbifold.

Example 20.1. Suppose $\mathbb{T}^3 = S^1 \times \mathbb{T}^2$. We write

$$S^1 \subset \mathbb{C}$$

 $S^1 = \left\{ \exp^{i\theta} | \theta \in \mathbb{R} \right\}.$

Then S^1 acts on \mathbb{T}^3 via $e^{i\theta} \cdot (z, w) = (e^{i\theta} \cdot z, w) \in S^1 \times \mathbb{T}^2$.

This suggestion is correct if the fibers of M can be consistently oriented and incorrect otherwise.

Example 20.2. $\mathbb{T}^2 = S^1 \times S^1$ is a product and there is a natural action of S^1 on the first coordinate, as shown below:

Example 20.3. \mathbb{K}^2 also has an S^1 action, as shown below:

Notice that rotation by π , in this example, has fixed points; namely the critical fibers.

Example 20.4. For the fibering of \mathbb{K}^2 shown below, there is no consistent orientation of the fibers. This is because \mathbb{K} reverses the orientation of the central fiber.

Exercise 20.5. If M is a Seifert fibered space and there is a circle action preserving the fibers then the fibers can be consistently oriented.

Exercise 20.6. Show that F^2 , a compact surface, is fibered by circles if and only if $\chi(F) = 0$. (so F is either $\mathbb{T}, \mathbb{K}, \mathbb{A}$ or \mathbb{M} by the classifications)

Question: Can \mathbb{P}^2 be fibered?

Recall that \mathbb{P}^2 is obtained as an identification space as shown below:

Let us try the following possible fiberings, as shown in the diagrams below:

The red line on the diagram is a line not a circle, hence this is not a fibering.

This attempt is also not a fibering because the length of the circles tends to zero at B.

Example 20.7. From example 20.2 we can see that $\mathbb{T}^2/S^1 \cong S^1$

Example 20.8. From example 20.3 we can see that $\mathbb{K}^2/S^1 \cong I(\overline{2},\overline{2})$

Example 20.9. From example 20.4 we can see that $\mathbb{K}^2/S^1 \cong S^1$

Recall: We say $\rho: T \to B$ is an F-bundle with the base B and total space T if

For every $x \in B$ there is a neighbourhood of x, $U \subseteq B$ and a trivialization $\phi \colon \rho^{-1}(U) \to F \times U$ such that $\rho = \operatorname{proj}_2 \circ \emptyset$

We say two bundles $\rho: T \to B$ and $\sigma: S \to B$ are isomorphic if there is a homeomorphism such that the following diagram commutes:

Example 20.10. Up to isomorphism, \mathbb{T}^2 and \mathbb{K}^2 as in examples 20.7 and 20.9 are the only S^1 bundles over S^1 .

Fact 20.11. If B has $\pi_1(B) = \{1\}$ then every S^1 -bundle over B is isomorphic to a product bundle.