22 Lecture 22

22.1 Example: The Hopf Fibration

Recall that $\mathbb{S}^3 = \{(z, w) \in \mathbb{C}^2 \mid |z|^2 + |w|^2 = 1\}$. Notice that the condition w = 0 determines the plane $\{(z, 0) \mid z \in \mathbb{C}\} \subseteq \mathbb{C}^2$.

Figure 1: \mathbb{S}^3 drawn on complex axes z and w.

This is the same as the plane $P_{(a,b)} = \{(z,w) \mid az + bw = 0\}$ for (a,b) = (0,1). We claim (1) that $P_{(a,b)} \cap \mathbb{S}^3$ is a circle (i.e. an embedding of \mathbb{S}^1) for all $(a,b) \neq (0,0)$. Furthermore we claim (2) that $P_{(a,b)} = P_{(c,d)}$ if and only if (a,b) is a multiple of (c,d); that is, ad - bc = 0.

As an example, consider $P_{(0,1)}$, the z-axis. Then we must solve the system of equations (i) $|z|^2 + |w|^2 = 1$ and (ii) w = 0. So |z| = 1 and thus

$$\mathbb{S}^3\cap P_{(0,1)}=\Big\{(e^{i\theta},0)\in\mathbb{C}^2\ \big|\ \theta\in[0,2\pi]\Big\}.$$

To see how this implies claim (1), note that for a general (a, b) there is a rotation of $\mathbb{R}^4 \cong \mathbb{C}^2$ sending $P_{(0,1)}$ to $P_{(a,b)}$ and preserving \mathbb{S}^3 ; see Figure 2.

We claim (3) that if (a, b) is not a scalar multiple of (c, d) then $P_{(a,b)} \cap P_{(c,d)} = \{0\}$; see Figure 3.

So we find that the collection

$$\{\mathbb{S}^3 \cap P_{(a,b)} \mid (a,b) \neq (0,0)\}$$

is a disjoint partition of \mathbb{S}^3 into circles. Note that \mathbb{S}^1 acts on \mathbb{S}^3 by

$$e^{i\theta} \cdot (z, w) = (e^{i\theta}z, e^{i\theta}w)$$

and this action preserves the circles. To see this, note that the action preserves \mathbb{S}^3 ; next we check that the action preserves $P_{(a,b)}$:

$$(a,b) \cdot (e^{i\theta}z, e^{i\theta}w) = [(a,b) \cdot (z,w)]e^{i\theta} = 0.$$

Question 22.1. Can we see that \mathbb{R}^3 is Seifert fibred by taking the stereographic projection of the fibering of \mathbb{S}^3 to \mathbb{R}^3 ?

Figure 2: A rotation preserving \mathbb{S}^3 that sends $P_{(0,1)}$ to $P_{(a,b)}$.

Answer 22.2. No. At the point N=(0,-1) stereographic projection is not defined. So the circle $\{z=0\}$ in \mathbb{S}^3 is not sent to a circle.

The above partition of \mathbb{S}^3 is called the *Hopf fibration*. We claim (4) that the Hopf fibration is a Seifert fibering. This follows since $\mathbb{S}^3/\mathbb{S}^1 \cong \mathbb{CP}^1 \cong \mathbb{S}^2$. For a more direct proof of this fact, we will consider stereographic projection.

Define the stereographic projection map $p: \mathbb{S}^3 - \{N\} \to \mathbb{R}^3$ by $x \mapsto L \cap (\mathbb{R}^3 \times \{0\})$, where L is the line through N and $x \in \mathbb{S}^3$ as in Figure 4. Figure 5 shows a picture of the image.

Notice that (c.f. claim (4)) the inside of the torus

$$T = \left\{ (z, w) \in \mathbb{C}^2 \left| \left| z \right| = \left| w \right| = \frac{1}{\sqrt{2}} \right\}$$

is a copy of T(1,1). So the circle $P_{(0,1)} \cap \mathbb{S}^3$ has a fibred neighbourhood; hence by the proof of claim (1), every circle has a fibred neighbourhood. So this is indeed a Seifert fibred space. Furthermore:

- (a) There are no critical fibres.
- (b) The fundamental group $\pi_1(\mathbb{S}^3) = \{1\}$ so also $\pi_1(\mathbb{S}^3/\mathbb{S}^1) = \{1\}$ because $p_*: \pi_1(\mathbb{S}^3) \to \pi_1(\mathbb{S}^3/\mathbb{S}^1)$ is a surjection.
- (c) Since \mathbb{S}^3 is closed, so is $\mathbb{S}^3/\mathbb{S}^1$.

We deduce from the classification of surfaces that $\mathbb{S}^3/\mathbb{S}^1\cong\mathbb{S}^2$.

Exercise 22.3. \mathbb{S}^3 has many non-isomorphic Seifert fiber structures; for example, show that \mathbb{S}^3 fibres over $\mathbb{S}^2(p,q)$ if gcd(p,q) = 1 and $1 \le q \le p$.

Exercise 22.4. SO(3) is also a circle bundle over \mathbb{S}^2 .

Remark 22.5. $\mathbb{S}^1 \times \mathbb{S}^2$, \mathbb{S}^3 (as above) and SO(3) are all non-isomorphic \mathbb{S}^{1-} bundles over \mathbb{S}^2 . To see this, consider their fundamental groups.

Figure 3: The intersection of $P_{(a,b)}$ and $P_{(c,d)}$ contains only the origin if $(a,b) \neq \lambda(c,d)$ for some $\lambda \in \mathbb{C} - \{0\}$.

Figure 4: Stereographic projection of \mathbb{S}^3 to \mathbb{R}^3 .

Definition 22.6. Let p,q be given such that $\gcd(p,q)=1$ and $1\leq q< p$. Define $\zeta=e^{2\pi i/p}$. Then define the lens space

$$L(p,q)=\mathbb{S}^3\big/\sim$$

where $(z, w) \sim (z', w')$ if and only if $(z', w') = (\zeta z, \zeta^q w)$.

Exercise 22.7. L(p,q) is a Seifert fibred space over $\mathbb{S}^2(p,p)$ in a natural way.

Figure 5: The image of the stereographic projection map p.