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22 Lecture 22

22.1 Example: The Hopf Fibration

Recall that S3 = {(z, w) ∈ C2
|z|2 + |w|2 = 1}. Notice that the condition w = 0

determines the plane {(z, 0)
z ∈ C} ⊆ C2.

Figure 1: S3 drawn on complex axes z and w.

This is the same as the plane P(a,b) = {(z, w)
az + bw = 0} for (a, b) =

(0, 1). We claim (1) that P(a,b) ∩ S3 is a circle (i.e. an embedding of S1) for all
(a, b) 6= (0, 0). Furthermore we claim (2) that P(a,b) = P(c,d) if and only if (a, b)
is a multiple of (c, d); that is, ad− bc = 0.

As an example, consider P(0,1), the z-axis. Then we must solve the system
of equations (i) |z|2 + |w|2 = 1 and (ii) w = 0. So |z| = 1 and thus

S3 ∩ P(0,1) =
{

(eiθ, 0) ∈ C2
 θ ∈ [0, 2π]

}
.

To see how this implies claim (1), note that for a general (a, b) there is a rotation
of R4 ∼= C2 sending P(0,1) to P(a,b) and preserving S3; see Figure 2.

We claim (3) that if (a, b) is not a scalar multiple of (c, d) then P(a,b)∩P(c,d) =
{0}; see Figure 3.

So we find that the collection

{S3 ∩ P(a,b)

(a, b) 6= (0, 0)}

is a disjoint partition of S3 into circles. Note that S1 acts on S3 by

eiθ · (z, w) = (eiθz, eiθw)

and this action preserves the circles. To see this, note that the action preserves
S3; next we check that the action preserves P(a,b):

(a, b) · (eiθz, eiθw) = [(a, b) · (z, w)]eiθ = 0.

Question 22.1. Can we see that R3 is Seifert fibred by taking the stereographic
projection of the fibering of S3 to R3?
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Figure 2: A rotation preserving S3 that sends P(0,1) to P(a,b).

Answer 22.2. No. At the point N = (0,−1) stereographic projection is not
defined. So the circle {z = 0} in S3 is not sent to a circle.

The above partition of S3 is called the Hopf fibration. We claim (4) that the
Hopf fibration is a Seifert fibering. This follows since S3/S1 ∼= CP1 ∼= S2. For a
more direct proof of this fact, we will consider stereographic projection.

Define the stereographic projection map p : S3 − {N} → R3 by x 7→ L ∩
(R3 × {0}), where L is the line through N and x ∈ S3 as in Figure 4. Figure 5
shows a picture of the image.

Notice that (c.f. claim (4)) the inside of the torus

T =
{

(z, w) ∈ C2
|z| = |w| = 1√

2

}
is a copy of T (1, 1). So the circle P(0,1) ∩ S3 has a fibred neighbourhood; hence
by the proof of claim (1), every circle has a fibred neighbourhood. So this is
indeed a Seifert fibred space. Furthermore:

(a) There are no critical fibres.

(b) The fundamental group π1(S3) = {1} so also π1(S3/S1) = {1} because
p∗ : π1(S3)→ π1(S3/S1) is a surjection.

(c) Since S3 is closed, so is S3/S1.

We deduce from the classification of surfaces that S3/S1 ∼= S2.

Exercise 22.3. S3 has many non-isomorphic Seifert fiber structures; for exam-
ple, show that S3 fibres over S2(p, q) if gcd(p, q) = 1 and 1 ≤ q ≤ p.

Exercise 22.4. SO(3) is also a circle bundle over S2.

Remark 22.5. S1 × S2, S3 (as above) and SO(3) are all non-isomorphic S1–
bundles over S2. To see this, consider their fundamental groups.
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Figure 3: The intersection of P(a,b) and P(c,d) contains only the origin if (a, b) 6=
λ(c, d) for some λ ∈ C− {0}.

Figure 4: Stereographic projection of S3 to R3.

Definition 22.6. Let p, q be given such that gcd(p, q) = 1 and 1 ≤ q < p.
Define ζ = e2πi/p. Then define the lens space

L(p, q) = S3
/
∼

where (z, w) ∼ (z′, w′) if and only if (z′, w′) = (ζz, ζqw).

Exercise 22.7. L(p, q) is a Seifert fibred space over S2(p, p) in a natural way.
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Figure 5: The image of the stereographic projection map p.
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