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23 Lecture 23

Recall 23.1. We were discussing the image of the stereographic projection of
the Hopf fibration to R3.
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Figure 1: The torus in R? is obtained as the sterogrpahic projection of the torus
in S3
V and W are copies of T'(1,1).

Remark 23.2. Every solid torus V 22 S' x D? has a meridian disc of the form
{1} x D2

Picture:

Figure 2: In the last picture we see V' is fibred as T'(1,1)

However we recall that T'(1,1) is isomorphic to 7°(1,0) and in general that
T(p,q) = T(p,q +p)-

Basic Topology - Embeddings

Definition 23.3. A map f:Y — X is an embedding if f is a homeomorphism
onto its image.

Definition 23.4. An embedding f : Y — X is proper if X and Y are manifolds
and f~1(0X) = 09Y.
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Figure 3: These are examples of proper embeddings of I into A2
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Figure 4: These are examples of embeddings of I into A2 which are not proper

Definition 23.5. Suppose F': Y x I — X and define f;(y) = F(y,t). Then F
is a proper isotopy if f; is an embedding for all ¢ € I.

We think of F as a l-parameter family of embeddings or in other words a
continuous motion of Y in X.

Exercise 23.6. Up to proper isotopy there is only one properly embedded arc
in D2,

D

Hint: Look up Alexander’s trick.
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Exercise 23.7. There are three properly embedded arcs in A? (and two in M?)
up to proper isotopy.
Hint: Don’t waste pages thinking about transversality.

Exercise 23.8. Suppose M is a Seifert-fibred space in which all the fibres can
be consistently oriented. Show all regular fibres are isotopic. (NB: not properly)

Remark 23.9. If fibres can’t be consistently oriented then regular fibres are
isotopic as sets but not as parameterised circles.
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Figure 5: Fibres which are isomorphic as sets but not as functions

As sets the two fibres are the same and they are given by
p:St = T2 ple’) = (e, x)
q:St = T2 g(e)
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As functions they are different.

Remark 23.10. If M contains a vertical K? (consisting of a union of fibres)
then all regular fibres with any orientation are isotopic.

Figure 6: A vertical Klein bottle

Sections
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Definition 23.11. Suppose F — T % B is an F-bundle over B. A map
0 : B — T is called a section of p if poo = idp.

Example 23.12. Let T? = S! x S’
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Then oy, : St — T? where € s (€5 ) is a section.

Exercise 23.13. All sections of p are isotopic to oy for some (unique) k.

Exercise 23.14. For every section ¢ of p : T? — S! there is an automorphism
g € Aut(T? LN S') such that g o o = 0g. [Important: Give g explicitly for all of
the o]

Exercise 23.15. Do the above exercise for p : K? — S*.
There are two sections up to isotopy but only one up to isomorphism.
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Figure 7: The two sections (up to isotopy) of p : K2 — S!



