Saul Schleimer	MA4J2
Robert Gasper	15th March 2012

27 Lecture 27

27.1 Slopes on Tori

Suppose U = T(p,q), is the fibred solid torus with *orbit invariant* (p,q). Choose a homeomorphism $U \cong S^1 \times \mathbb{D}^2$, this is not canonical. However two such choices only differ (after isotopy) by a *Dehn twist* about the meridional disc.

Figure 1

Figure 2

That is, choosing the homeomorphism between U and $S^1 \times \mathbb{D}^2$ amounts to choosing the number of times the blue curve twists around the meridional slope.

Definition 27.1. Let $\mu = pt \times \partial \mathbb{D}^2$ be a meridional slope.

Definition 27.2. Let $\lambda = S^1 \times x$ for x in $\partial \mathbb{D}^2$ be the *longitudinal slope*.

Definition 27.3. Let $\phi \subseteq \partial U$ be a fibre, we call ϕ the *fibre slope*.

Figure 3: Here λ twists round three times.

27.2 Algebraic Intersection

Definition 27.4. Suppose $\alpha, \beta \subset \mathbb{T}^2$ are oriented slopes. Define $\alpha \cdot \beta$, the *algebraic intersection* of α with β (in that order) by $\alpha \cdot \beta = \sum_{x \in \alpha \cap \beta} \operatorname{Sign}(x)$, where $\operatorname{Sign}(x) = \pm 1$ as the crossing of α, β at x agrees/disagrees with the orientation of \mathbb{T}^2 .

Figure 4: $\operatorname{Sign}(x) = +1$

Figure 5: Sign(x) = -1

According to our conventions, $\mu \cdot \lambda = +1$, note that $\lambda \cdot \mu = -1$ and this algebraic intersection is antisymmetric for all α, β .

Example 27.5. Consider T(1,3): $\lambda \cdot \phi = +p$ and $\phi \cdot \lambda = +q$,

Figure 6

Figure 7

Remark 27.6. Really $\phi \cdot \lambda \equiv q \pmod{p}$ but we can Dehn twist to get exactly q.

Exercise 27.7. The slopes α and β with actual slope represented by $\frac{p}{q}$ and $\frac{r}{s}$ have $|\alpha \cdot \beta| = |ps - qr|$.

Figure 8

27.3 Seifert Fibred Spaces

Suppose $p: M \to B$ is a Seifert bundle, so $B = M/S^1$. Assume that M is orientable and all fibres of M can be consistently oriented. Let $x_i \subseteq$ be a finite set that is nonempty and that contains all of the cone points. Let $D_i = N(x_i)$ be a small disc about x. Let $F = \overline{B - \Box D_i}$, this is a surface with $\partial F \neq \emptyset$.

Figure 9

Let $T = M|_F$, so $p: T \to F$ is an S^1 -bundle over a surface with nonempty boundary. Let $U_i = M|_{D_i}$, so $M = T \cup (\sqcup U_i)$, M is a union of an S^1 -bundle with many solid tori.

Let $s: F \to T$ be any section for $p: T \to F$. Note that this is making a choice. Let $d_i = \partial D_i$ and $\delta_i = s(d_i)$. Notice that δ_i is a slope on ∂U_i , call this the sectional slope.

Definition 27.8. $a_i = \mu_i \cdot \phi_i = p_i$, $b_i = \delta_i \cdot \mu_i$. Scott calls $(a_i b_i)$ the *Seifert invariants* of the fibre $C_i = M|_{x_i} = p^{-1}(x_i)$, however these aren't really invariants since b_i depends on the choice of section.

Exercise 27.9. For all $i, \delta_i \cdot \phi_i = \pm 1, \pm 1$ in ∂T and -1 in ∂U_i . δ_i and ϕ_i intersect once and so they generate $\mathbb{Z} \oplus \mathbb{Z}$.

Lemma 27.10. $b_i \cdot q_i \equiv 1(modp_i)$

Proof. $1 = \mu \cdot \lambda = (a\delta + b\phi) \cdot \lambda = a\delta \cdot \lambda + b\phi \cdot \lambda = p(\delta \cdot \lambda) + b \cdot q.$ So $1 = b \cdot q \pmod{p}$ as desired. \Box

Exercise 27.11. $\alpha \cdot \beta = -\beta \cdot \alpha$ thus $\alpha \cdot \alpha = 0$.

Check each, both should follow directly from the definition and so the above justifies writing $\mu = a\delta + b\phi$.