Saul Schleimer	MA4J2	
Catherine Hall	16th March 2011	

28 Lecture **28**

28.1 From last lecture

<u>Recall</u> If M is a Seifert fibered space with base space B, let $x_i \subseteq B = \frac{M}{S^1}$ be a finite collection of points which contains all the cone points of B. Assume M is orientable, so B has no mirror boundary.

Let $D_i = N(x_i)$, $U_i = \frac{M}{D_i}$, $F = \overline{B - \amalg D_i}$

Let μ_i , λ_i , φ_i , δ_i be the meridional, longitudinal, fiber and sectional slopes respectively in $\delta(U_i) \cong \mathbb{T}^2$.

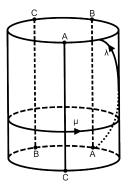


Figure 1: The solid fibred torus U_i . φ is the slope passing through A, B and C.

Let $\alpha \circ \beta$ denote the algebraic intersection of slopes α and β . Notice that $U_i \cong T(p_i, q_i)$ so

- 1. $\mu_i \circ \lambda_i = 1$ This defines λ_i up to Dehn twists of U_i , i.e λ_i is defined so it meets μ_i exactly once. We make a choice of the number of Dehn twists using $\phi_i \circ \lambda_i = q_i + kp_i$ and this defines λ_i uniquely. (Using k = 0 makes this nice.)
- 2. $\delta_i \circ \lambda_i = 1$ We have chosen the orientation of the sectional slope δ_i to make this equation true. (δ_i looks like μ_i).
- 3. $\mu_i \circ \phi_i = p_i$

Definition 28.1. Define a_i and b_i by $a_i = \mu_i \circ \lambda_i$, $b_i = \delta_i \circ \mu_i$.

Hence $a_i = p_i$.

<u>Note</u> $\delta(U) \cong \mathbb{T}^2$ has basis (δ, ϕ) . With respect to this basis, we write $\mu = a_i \circ \delta_i + b_i \circ \phi_i$. Let's check this.

$$\delta_i \circ \mu_i = \delta_i \circ (a_i \delta_i + b_i \mu_i)$$

= $a_i (\delta_i \circ \delta_i) + b_i (\delta_i \circ \phi_i)$
= b_i

Figure 2: Basis of $\delta(U_i)$

Also

$$\mu_i \circ \phi_i = (a_i \delta_i + b_i \phi_i) \circ \phi_i$$

= $a_i (\delta_i \circ \phi_i) + b_i (\phi_i \circ \phi_i)$
= a_i

Lemma 28.2. $b_i \circ q_i \equiv 1 \pmod{p_i}$

Proof done last lecture.

28.2 Euler number

The Euler number (p_i, q_i) is the orbit invariant of U_i . The Seifert invariant is (a_i, b_i) . (This is a bad name, as (a_i, b_i) is not actually an invariant.)

These depend on the choice of section $p: T \to F$.

Definition 28.3. $e(M) = -\sum \frac{b_i}{a_i}$

Theorem 28.4. e(M) is an invariant of $p: T \to F$, i.e e(M) does not depend on the choice of section.

<u>Recall</u> There is a sentence in my notes here that does not make any sense. It goes like this: The orientability of B, M and of the fibers, as well as the isomorphism class of B, as well as the isomorphism invariants of $p: T \to F$.

Example 28.5. $e(S^1 \times F) = 0$

Exercise 28.6. Prove this directly from the definition.

Example 28.7. $e(Hopf: S^3 \rightarrow S^1) = 1$

Theorem 28.8. e(M) = 0 if and only if M is finitely covered by $\widetilde{M} = S^1 \times F$.

Theorem 28.9. Suppose there is a covering of Seifert fibered structures $M \rightarrow N$, of degree d_M . Consider the diagram:

1. $d_M = d_B \cdot d_F$

Saul Schleimer	MA4J2
Catherine Hall	16th March 2011

2. $d_F \cdot e(M) = e(N) \cdot d_B$

Compare (2) to our previous formula $\chi^{orb}(B) = d_B \cdot \chi^{orb}(C)$. Theorem 28.8 is a weaker version of (2).

In summary: $\chi^{orb}(B)$ and e(M) together suffice to detemine the kind of geometry that models M.

Following Scott:

	$\chi^{orb}(B) < 0$	$\chi^{orb}(B) = 0$	$\chi^{orb}(B) < 0$
e(M) = 0	$\mathbb{R} imes S^2$	\mathbb{E}^3	$\mathbb{R} \times \mathbb{H}^2$
$e(M) \neq 0$	S^3	Nil	$\mathrm{PSL}(2,\mathbb{R})$

So if e(M) = 0 we get products, i.e $S^1 \times F$ where F is a surface, and if $e(M) \neq 0$ we get twisted geometries.