5 Lecture 5

5.1 Group Actions

Definition 5.1. Suppose X is a topological space and G is a group acting on X by homeomorphisms.

(i) Say that G acts faithfully if the natural map $G \to Homeo(X)$ is injective.

(ii) For $g \in G$, define $fix(g) := \{x \in X \mid g(x) = x\}$.

(iii) $g \in G$ acts *freely* if $fix(g) = \emptyset$ and the group G is said to act freely if for all $g \in G - \{Id_X\}$, g acts freely.

(iv) G acts properly discontinuously if for all $C \subseteq X$ compact, the set $\{g \in G \mid g(C) \cap C \neq \emptyset\}$ is finite.

(v) If $x \in X$ let $Stab(x, G) = \{g \in G | g(x) = x\}$. (Note: This is a subgroup of G, sometimes called the *isotropy group* at X).

(vi) Suppose X is a geometry and G < Isom(X) is a subgroup (using the notation < to denote subgroup). G is discrete (or acts discretely) if G is discrete with the subspace topology.

Exercise 5.2. : If X a geometry then G < Isom(X) is discrete iff G acts properly discontinuously.

The topology on Isom(X) is the *compact open topology* (the definition of which is left as a reading exercise).

Example 5.3. $\mathbb{E}^1 = (\mathbb{R}, dx)$.

Figure 5.1: \mathbb{E}^1

Exercise 5.4. : $Isom(\mathbb{E}^1) \cong \mathbb{R} \rtimes O(1) = \mathbb{R} \rtimes \mathbb{Z}/2\mathbb{Z}$. (Recall that $O(n) = \{A \in M(n,n) | AA^T = I_n\}$).

 $Isom(\mathbb{E}^1) \cong \{x \to \pm x + a | a \in \mathbb{R}\}$ with translations $x \to x + a$ (denoted by T_a) and reflections $x \to 2a - x$ (denoted by R_a).

Figure 5.2: Action of T_a and R_a on \mathbb{E}^1

Note that if $a \neq 0$, T_a acts freely and $fix(R_a) = \{a\}$.

Remark 5.5. The subscripts of T_a and R_a are giving parametrisations of the two components of $Isom(\mathbb{E}^1)$.

Exercise 5.6. : The following diagram classifies the discrete subgroups of $Isom(\mathbb{E}^1)$, up to isomorphism.

	freely	not freely
finite	$1 = < T_0 >$	$\mathbb{Z}/2\mathbb{Z} \cong < R_0 >$
not finite	$\mathbb{Z} \cong \langle T_1 \rangle$	$D_{\infty} \cong \langle R_0, R_{\frac{1}{2}} \rangle$

For each G listed above, we have a quotient \mathbb{E}^1/G :

Notation: $\langle A \rangle$ is the group generated by elements of A.

Claim: $D_{\infty} \cong \langle \alpha, \beta \mid \alpha^2, \beta^2 \rangle = \langle A \mid R \rangle$ where A is the set of generators and R are relations.

Note that if w is any word in α , β , for example $w = \alpha^3 \beta^3 \alpha^{-4} \beta^2 \alpha^2 \beta^{-3}$, then we may rewrite it using the relations to get $w = \alpha \beta \beta = \alpha$. So any word in $\langle \alpha, \beta | \alpha^2, \beta^2 \rangle$ may be rewritten so that all powers are one and α is followed only β and conversely:

 $\alpha,\,\beta,\,\alpha\beta,\,\beta\alpha,\,\alpha\beta\alpha,\,\beta\alpha\beta...$ ie the list

$$\{\begin{array}{ccc} (\alpha\beta)^n\alpha, & (\alpha\beta)^n \\ (\beta\alpha)^n\beta, & (\beta\alpha)^n \end{array} \mid n \in \mathbb{N} \}$$

is a complete list of representatives.

If $\alpha = R_0$, $\beta = R_{\frac{1}{2}}$ then $R_{\frac{1}{2}}R_0 \colon x \to -x \to 1 - (-x) = 1 + x = T_1$. So $\beta \alpha = T_1$, $\alpha \beta = T_{-1}$ is the inverse and $\mathbb{Z} < D_{\infty}$ is a subgroup of index two ie $< \alpha \beta > < < \alpha, \beta >.$

Remark 5.7. $T_1R_0 = \beta \alpha \alpha = \beta = R_{\frac{1}{2}}.$

$$D_{\infty} \left| \begin{array}{c} \mathbb{E}^{1} \\ \mathbb{Z} \\ \mathbb{S}^{1} \\ \mathbb{Z}/2\mathbb{Z} \\ I \end{array} \right|$$

Figure 5.3: Taking quotients of \mathbb{E}^1 by discrete subgroups of $Isom(\mathbb{E}^1)$.

Exercise 5.8. : Classify discrete subgroups of $O(2) = \mathbb{S}^1 \rtimes \mathbb{Z}/2\mathbb{Z}$.