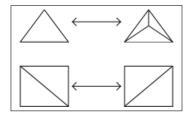
Saul Schleimer	MA4J2
Italo Cipriano	24th Jan 2012

7 Lecture 7

7.1 Aside from support class

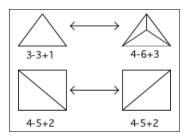
A Pachner move (or bistellar flip) in dimension two is one of the following local moves:



Theorem 7.1 (Pachner). Any two triangulations of a closed surface are connected by a sequence of Pachner moves.

Example 7.2 (An application of Pachner's theorem). $\chi(F)$ is well defined: Prove this by showing that a single bistellar flip does not change Euler characteristic.

Check:



Example 7.3. As another application, show that orientability is independent of the choice of triangulation.

Exercise 7.4. Classify elements of $\text{Isom}(\mathbb{E}^2)$ as either the identity, a reflection in some line, a rotation about a point, a translation or a glide reflection.

Exercise 7.5. Do the same for $\text{Isom}(\mathbb{S}^2)$.

Exercise 7.6. Classify the discrete subgroups of $\text{Isom}(\mathbb{S}^1) \cong O(2)$].

Saul Schleimer	MA4J2
Italo Cipriano	24th Jan 2012

7.2 Last time

Let X be one of $\mathbb{S}^2, \mathbb{E}^2, \mathbb{H}^2$.

Theorem 7.7. If F is modelled on X then there is a discrete subgroup G < Isom(X), acting freely on X such that $F \cong X/G$ [Isometric].

The last theorem says that if

 $\begin{array}{l} A \doteq \{ \text{ Surface modelled on X} \} \, / \text{Isometry and} \\ B \doteq \{ \ G < Isom(X) \text{discrete, acting freely} \} \, / \text{Conjugation,} \end{array}$

then we have

$$B \ni G \mapsto X/G \in A$$
 and
 $A \ni F \mapsto \operatorname{Deck}(X \to F) \in B.$

A major innovation of Thurston (Seifert, and others) is the drop of the hypothesis of freeness.

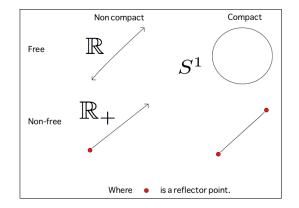


Figure 1: Discrete Quotients of \mathbb{R} .

The manifolds and orbifolds shown in Figure 1 correspond to the four isomorphism classes of discrete subgroup, $\mathbb{1}, \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}$ and D_{∞} , where

$$D_{\infty} \cong \left\langle \alpha, \beta \mid \alpha^2, \beta^2 \right\rangle.$$

If we abandon freeness we have the following diagram:

 $\{F \text{ an orbifold modelled on } X\}$ /Isometry

$$\begin{array}{c|c} G \mapsto X/G & \swarrow F \mapsto Deck(X \to F) \\ T \text{ a tiling on } X \} / Isom(X) & T \mapsto Sym(T) \\ \end{array} \begin{array}{c} G \mapsto \text{Fund Domain} \\ G < Isom(X) \text{ discrete} \} \end{array}$$



Figure 2: The discrete subgroups of $\text{Isom}(\mathbb{E}^1)$.

Now we will go up one dimension. The friezes are planar tilings that repeat along a line. There are seven of them.

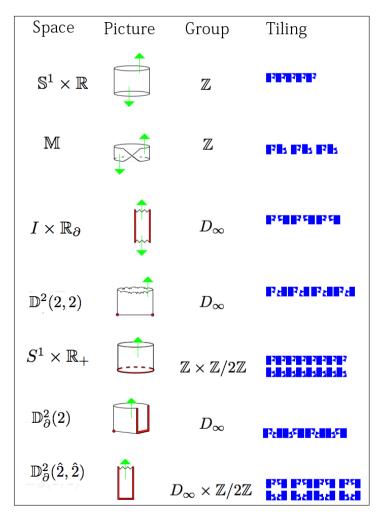


Figure 3: The seven frieze groups.