EXERCISES ON ABELIAN GROUPS AND QUOTIENTS

- 1. If $\phi: G_1 \to G_2$ is a group homomorphism, then by definition $\ker(\phi)$ is equal to the preimage of e_2 . Can you describe the *cosets* of $\ker(\phi)$ in G_1 in an analogous way?
- **2.** Let A and B be subgroups of a abelian group C, with $A \cap B = 0$. Show that the map $\phi : A \oplus B \to C$ sending (a,b) to a+b is an injective homomorphism.
- **3.** In the group $G = \mathbb{Z} \times \mathbb{Z}$, consider the subgroup H generated by (-5,1) and (1,-5). Show that G/H is cyclic. Which of the standard cyclic groups is it isomorphic to?
- **4.** In the group \mathbb{Z}^2 , consider the subgroup H generated by (a,b) and (c,d).
 - (i) Show that if

$$\det \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \neq 0$$

then \mathbb{Z}^2/H is a finite group. Hint: suppose the determinant is equal to n. Show that (n,0) and (0,n) both lie in H.

(ii) Show the converse of (i): if G/H is a finite group then the determinant is non-zero. Hint: show that if G/H is finite then for some $m, n \in \mathbb{Z}$, we must have $(m, 0) \in H$ and $(0, n) \in H$. Hence there exist integers p, q, r, s such that

$$(m,0) = p(a,b) + q(c,d), \quad (0,n) = r(a,b) + s(c,d).$$

Rewrite these two equations as as a single matrix equation.

- (ii) In each of the following cases, decide whether G/H is cyclic. If it is cyclic, determine which of the standard cyclic groups it is isomorphic to:
 - 1. (a,b) = (3,4), (c,d) = (6,7)
 - (a,b) = (3,4), (c,d) = (5,7)
- **5.** Suppose that A, B are subgroups of the abelian group C. We define

$$A + B = \{a + b : a \in A, b \in B\}.$$

- (i) Show that A + B is a subgroup of C.
- (ii) There is a natural homomorphism $\phi: A \times B \to A + B$, defined by $\phi(a,b) = a + b$. Show that ϕ is surjective, and show that ϕ is an isomorphism if and only if $A \cap B = \{0\}$. If $A \cap B \neq \{0\}$, what is ker ϕ ?
- (iii) Now assume that A and B are both finite. If $A \cap B$ is bigger than just $\{0\}$, how many elements does the subgroup A + B have? Hint: Use the first isomorphism theorem.
- **6.** (i) Suppose that A is an abelian group. Show that the set $T = \{a \in A \mid a \text{ has finite order}\}$ is a subgroup. It is known as the "torsion subgroup" of A.
 - (ii) Show that in the quotient group A/T, every non-zero element has infinite order. So A/T is "torsion-free".
- (iii) Let A be an abelian group. Explain how to define a subgroup H such that in the quotient A/H, every element \bar{a} satisfies $3\bar{a} = \bar{0}$. Is there a smallest such subgroup? (Here \bar{a} means a + H and $\bar{0}$ means H itself.)
- 7. Let A and B be subgroups of an abelian group C. This exercise examines the subgroup A + B and its quotient (A + B)/B.
 - (i) Show that every element in (A+B)/B can be written in the form a+B for some $a \in A$.
 - (ii) Construct a surjective homomorphism $A \to (A+B)/B$.
 - (iii) Prove that there is an isomorphism

$$A/(A \cap B) \to (A+B)/B$$
.

8. Any finitely generated abelian group is isomorphic to a direct sum of copies of \mathbb{Z} and cyclic groups \mathbb{Z}/n . The rank of the abelian group A is the number of copies of \mathbb{Z} .

- 1. If A is an abelian group of rank r, show that $A/T(A) \simeq \mathbb{Z}^r$, where T(A) is the torsion subgroup, defined in Exercise 6 above.
- 2. If

$$0 \to A \to B \to C \to 0$$

is a short exact sequence of finitely generated abelian groups, show that

$$rank (A) - rank (B) + rank (C) = 0.$$

3. How does the last statement generalise to the case of an exact sequence

$$0 \to A_1, \to A_2 \to \cdots \to A_{n-1} \to A_n \to 0$$