МАЗН60

THE UNIVERSITY OF WARWICK

THIRD YEAR EXAMINATION: MAY 2012

ALGEBRAIC TOPOLOGY

Time Allowed: 3 hours

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book.

ANSWER 4 QUESTIONS.

If you have answered more than the required 4 questions in this examination, you will only be given credit for your 4 best answers.

The numbers in the margin indicate approximately how many marks are available for each part of a question.

1. (a) The following diagram shows a rectangle whose two ends, BC and DA, are identified to make a Möbius strip M. Use the diagram to give M a Δ -complex structure, and compute the boundary of each of the simplices in this structure. [4]

- (b) Using your answer to (a), choose bases for $\Delta_i(M)$ for i = 0, 1, 2 and exhibit the chain complex $\Delta_{\bullet}(M)$ as a sequence of free abelian groups and explicit matrices. [4]
- (c) Use this complex to calculate the homology groups of M, taking care to give explicit definitions of any isomorphisms you use. [6]
- (d) Now let N be the boundary of the Möbius strip. By using some of the simplices of the Δ -complex structure you gave to M, give N a Δ -complex structure. Compute $H_1(N)$, and determine, as a homomorphism of abstract groups, the map $H_1(N) \to H_1(M)$ that results from the inclusion of chain complexes $\Delta_{\bullet}(N) \hookrightarrow \Delta_{\bullet}(M)$. [4]
- (e) Using the calculations you have done, calculate the relative homology groups $H_1(M,N)$ and $H_2(M,N)$, as abstract groups. Indicate also simplicial chain(s) generating $H_1(M,N)$. [4]
- (f) Describe the space M/N. [3]

2. Suppose that $0 \longrightarrow A_{\bullet} \xrightarrow{i} B_{\bullet} \xrightarrow{j} C_{\bullet} \longrightarrow 0$ is a short exact sequence of chain complexes. In lectures we showed how to define the connecting homomorphism ∂ : $H_n(C_{\bullet}) \to H_{n-1}(A_{\bullet})$ and proved exactness of the sequence

$$\cdots \longrightarrow H_{n+1}(C_{\bullet}) \xrightarrow{\partial} H_n(A_{\bullet}) \xrightarrow{i_{\bullet}} H_n(B_{\bullet}) \xrightarrow{j_{\bullet}} H_n(C_{\bullet}) \xrightarrow{\partial} H_{n-1}(A_{\bullet}) \longrightarrow \cdots$$

To do:

- (a) Explain the construction of ∂ , and show that it is well defined. [12]
- (b) Show how to construct the long exact sequence of reduced homology of a pair (X, A)
- (c) The Snake Lemma says that given a commutative diagram

$$0 \longrightarrow A_1 \longrightarrow B_1 \longrightarrow C_1 \longrightarrow 0$$

$$\downarrow^{\varphi_1} \qquad \downarrow^{\varphi_2} \qquad \downarrow^{\varphi_3}$$

$$0 \longrightarrow A_2 \longrightarrow B_2 \longrightarrow C_2 \longrightarrow 0$$

in which the rows are exact, there is an exact sequence

$$0 \to \operatorname{Ker}(\varphi_1) \to \operatorname{Ker}(\varphi_2) \to \operatorname{Ker}(\varphi_3) \to \operatorname{Coker}(\varphi_1) \to \operatorname{Coker}(\varphi_2) \to \operatorname{Coker}(\varphi_3) \to 0.$$

Show that this is a special case of the long exact sequence coming from a short exact sequence of complexes. [3]

(d) Let $C_n(X; \mathbb{Z}_n)$ be the group of chains with coefficients in \mathbb{Z}_n instead of in \mathbb{Z} , and let $H_k(X; \mathbb{Z}_n)$ denote the homology of the chain complex $C_{\bullet}(X; \mathbb{Z}_n)$. Show that there is a short exact sequence of chain complexes

$$0 \longrightarrow C_{\bullet}(X) \xrightarrow{\times n} C_{\bullet}(X) \longrightarrow C_{\bullet}(X; \mathbb{Z}_n) \longrightarrow 0$$

where $\times n$ is the map which multiplies all the coefficients in a chain by n. Deduce that there is a short exact sequence

$$0 \longrightarrow H_k(X)/nH_k(X) \longrightarrow H_k(X; \mathbb{Z}_n) \longrightarrow n\text{-torsion}(H_{k-1}(X)) \longrightarrow 0$$

where for an Abelian group A, n-torsion(A) denotes the kernel of the multiplication map $A \xrightarrow{n} A$. [7]

3. (a) State the excision theorem.

- (b) Let X be a CW complex, and, for each $n \in \mathbb{N}$, let X^n be its n-skeleton.
 - (i) Show that $H_k(X^n, X^{n-1}) = 0$ for $k \neq n$, and prove that $H_n(X^n, X^{n-1})$ is isomorphic to the free abelian group on the *n*-cells of X. [4]
 - (ii) Use the long exact sequence of the pair (X^n, X^{n-1}) to show that $H_k(X^n) = 0$ if k > n.
 - (iii) Show, with the help of a diagram, how to construct the boundary maps

$$H_n(X^n, X^{n-1}) \to H_{n-1}(X^{n-1}, X^{n-2})$$

in the Cellular Chain Complex, and show that they make it into a complex. Be sure to leave enough space for your diagram! [4]

- (iv) Show that the homology of the cellular chain complex is isomorphic to ordinary (singular) homology. For this you may assume without proof that the inclusion $X^n \hookrightarrow X$ induces isomorphisms $H_k(X^n) \to H^k(X)$ if k < n. [5]
- (v) State the Cellular Boundary Formula, and use it to compute the homology of the space obtained from $S^1 \vee S^1$ by gluing in two 2-cells by the words abab and a^3ba-1 .
- 4. (a) Define the degree of a continuous map $S^n \to S^n$. [3]
 - (b) Suppose that $f: S^n \to S^n$, and that for some point $y_0 \in S^n$, $f^{-1}(y_0) = \{x_1, \ldots, x_m\}$. Define the *local degree* of f at x_i , and show how to calculate it when n = 1.
 - (c) The thick line in the following diagram shows the image C of a map $f: S^1 \to \mathbb{R}^2$, with the arrows indicating the direction of travel as the parameter $\theta \in S^1$ increases from 0 to 2π .

Define a map $g: S^1 \to S^1$ by composing f with radial projection to S^1 : $g = r \circ f$, where $r(y) = y/\|y\|$. What is the degree of g? [5]

(d) Let $f: S^n \to S^n$ be a map of degree 0. Show that there exist points $x_1, x_2 \in S^n$ such that $f(x_1) = x_1$ and $f(x_2) = -x_2$. [4]

(e) Suppose that V is a continuous vector field on the unit (n+1)-ball D^{n+1} such that $V(x) \neq 0$ for all x. Define a map $f: S^n \to S^n$ by

$$f(x) = \frac{V(x)}{||V(x)||}.$$

Show that there must be a point on S^n where V points radially outwards, and a point on ∂D^{n+1} where V points radially inwards. [7]

5. (a) The following drawing shows a region W in the plane. What are the homology groups $H_k(W)$ for k = 0, 1 and 2? Draw a picture showing closed curves whose homology classes form a basis for $H_1(W)$. No explanation is required here.

[3]

- (b) Show in a picture the surface X that is obtained when two copies W_1 and W_2 of W are glued together by the identity map of their boundary. On your picture, draw closed curves whose homology classes form a basis for $H_1(X)$. No justification is required here. [4]
- (c) Explain briefly what is the *Mayer-Vietoris* exact sequence and where it comes from, describing in particular the construction of the connecting homomorphism. [8]
- (d) By slightly fattening W_1 and W_2 in the surface X of (c), we can assume they are both open in X. Using your prior knowledge of the homology of X, write down the Mayer Vietoris sequence associated to the two open sets W_1 and W_2 , using the bases for the groups H_1 you have given in (a) and in (b), introducing further bases where necessary, and showing matrices of the homomorphisms in the sequence. Give brief explanations. [10]

4