Please let me know if any of the problems are unclear or have typos.

Exercise 1.1. Show that the map $f: [0,1) \to S^1$, given by $f(t) = \exp(i\pi t) = \cos(\pi t) + i\sin(\pi t)$, is a continuous bijection, but is not a homeomorphism.

Exercise 1.2. Arrange the capital letters of the Roman alphabet, ABCDEFGHI-JKLMNOPQRSTUVWXYZ thought of as graphs, into homeomorphism classes. Briefly explain your reasoning, including your choice of font.

Exercise 1.3. Recall that B^n is the closed unit ball in \mathbb{R}^n while S^n is the unit sphere in \mathbb{R}^{n+1} . Show that no two of the interval B^1 , the circle S^1 , the disk B^2 , and two-sphere S^2 are homeomorphic.

Exercise 1.4. As in Exercise 1.2 classify the letters of the alphabet into homeomorphism types; this time, we think of the letters as small two-dimensional neighborhoods of the given planar graphs.

Exercise 1.5. [Reading exercise. Do not turn in.] The real projective space \mathbb{RP}^n is the space of lines through the origin in \mathbb{R}^{n+1} . This can also be described as the quotient of S^n by the antipodal map. The group SO(n) is the group of orthogonal *n*-by-*n* matrices with determinant one.

- Show that SO(2) is homeomorphic to S^1 .
- Show that SO(3) is homeomorphic to \mathbb{RP}^3 . It follows that $\pi_1(SO(3)) \cong \mathbb{Z}/2\mathbb{Z}$. Describe the generator of $\pi_1(SO(3))$ directly, and explain why traversing this loop twice gives a homotopically trivial loop.
- [Hard.] Recall that S^3 is a group via its identification with the unit quaternions $U\mathbb{H}$. Describe, in terms of the natural coordinates, the group homomorphism $U\mathbb{H} \to \mathrm{SO}(3)$ that corresponds to the quotient map $S^3 \to \mathbb{RP}^3$.