Please let me know if any of the problems are unclear or have typos.

Exercise 11.1. [Hatcher page 158, problem 36. Medium.] Show $H_n(X \times S^1) \cong H_n(X) \oplus H_{n-1}(X)$, where $H_i \cong 0$ for i < 0 by definition. Use this to give another proof that $\chi(X \times S^1) = 0$, when X is a CW-complex.

Exercise 11.2. [Hatcher page 157, problem 24.] Let K_5 and $K_{3,3}$ be, respectively, the complete graph on five vertices and the complete bipartite graph on six vertices. Show that neither can be the one-skeleton of a CW-complex structure on the two-sphere.

Exercise 11.3. [Medium.] Suppose that K is a *knot* in S^3 : that is, an embedding of S^1 into S^3 . Let N be a regular neighborhood of K; so N is an embedding of $S^1 \times B^2$ into S^3 . Let $X = S^3 - \operatorname{interior}(N)$ be the closure of the complement of N in S^3 . Compute $H_*(X)$. (You may assume without proof that X deformation retracts to a two-dimensional CW-complex.)

Exercise 11.4. Recall that SX is the suspension of X. Use the Mayer-Vietoris sequence to give another proof that $\widetilde{H}_k(X) \cong \widetilde{H}_{k+1}(SX)$.

Exercise 11.5. [Hatcher page 158, problem 29. Medium.] Suppose that S_g is a standardly embedded surface in \mathbb{R}^3 . Note that S_g bounds a handlebody V_g in \mathbb{R}^3 , and V_g deformation retracts to a graph. Let M_g be the space obtained by gluing two copies of V_g along their boundary, by the identity map. Compute $H_*(M_g)$.