Please let me know if any of the problems are unclear or have typos.

Exercise 2.1. [Medium. Hatcher page 104 and page 522.] Suppose that X is a topological space, equipped with a Δ -complex structure $\{\sigma_{\alpha} \colon \Delta_{\alpha} \to X\}_{\alpha \in I}$. Prove that X is Hausdorff.

Exercise 2.2. [Medium. Hatcher page 130 and page 520.] Suppose that X is a topological space, equipped with a Δ -complex structure $\{\sigma_{\alpha} \colon \Delta_{\alpha} \to X\}_{\alpha \in I}$. Suppose that $K \subset X$ is compact. Prove that K meets only finitely many open simplices.

Exercise 2.3. Show that every compact, connected, orientable surface without boundary admits a Δ -complex structure.

Exercise 2.4. [Medium.] Suppose that X and Y are equipped with Δ -complex structures. Show that $X \times Y$ admits a Δ -complex structure.

Exercise 2.5. Show that \mathbb{Q} is not isomorphic to a free Abelian group.

Exercise 2.6. [Hatcher's extra problems, 2.1.1.] Let X be the circle, equipped with the Δ -complex structure with n vertices and n edges. Compute the simplicial homology of X, directly from the definitions.

Exercise 2.7. List all Δ -complexes that can be made from a single two-simplex. [I believe there are seven.] For each, compute the simplicial homology groups.

Exercise 2.8. [Hard.] Let C(r) be the circle in the plane centered at (r, 0) and with radius r. Define $H = \bigcup_{n \in \mathbb{Z}_+} C(1/n)$ and endow it with the subspace topology. This is the *Hawaiian earring*. Show that H does not admit a Δ -complex structure.