MA3H6 Exercise sheet 3.

Please let me know if any of the problems are unclear or have typos.

Exercise 3.1. Compute the simplicial homology groups of the two-sphere, directly from the definitions, using the Δ -complex structure coming from the boundary of a tetrahedron. Provide clearly labelled figures.

Exercise 3.2. Suppose that X is a path-connected space, equipped with a Δ -complex structure. Show, directly from the definitions, that $H_0^{\Delta}(X) \cong \mathbb{Z}$. (You may assume without proof that the one-skeleton is connected.)

Exercise 3.3. Suppose that X is a finite, path-connected, one-dimensional Δ -complex: that is, a finite connected graph. Suppose that X has E edges and V vertices. Compute the simplicial homology groups of X.

Exercise 3.4. [Do not turn in.] Compute the reduced singular homology groups of a point, directly from the definitions.

Exercise 3.5. [Challenge.] Compute the singular homology groups of the circle S^1 , directly from the definitions.

Exercise 3.6. Compute the singular homology groups of the plane \mathbb{R}^2 , minus n points. Reference any theorems from Hatcher that you use.

Exercise 3.7. Suppose $f_{\#}: C_* \to D_*$ is a *chain map* of chain complexes: a sequence of group homomorphisms so that $\partial f = f\partial$. Show that this induces a well-defined homomorphism $f_*: H_*(C) \to H_*(D)$ on homology.

Exercise 3.8. [Do not turn in.]

- Suppose that X is a Δ -complex. Let $i: \Delta_*(X) \to C_*(X)$ be the inclusion homomorphism. Show that i is a chain map. (Later in the course we will prove i_* is an isomorphism from simplicial homology to singular.)
- Suppose that $f: X \to Y$ is a map of topological spaces. Show that the induced function $f_{\#}: C_{*}(X) \to C_{*}(Y)$ is a homomorphism and, in fact, a chain map.

Exercise 3.9. [Hatcher problem 12, page 132.] Show that chain homotopy of chain maps is an equivalence relation.

Exercise 3.10. We say that two chain complexes C_* and D_* are chain homotopy equivalent if there are chain maps $f: C_* \to D_*$ and $g: D_* \to C_*$ so that $g \circ f \sim \operatorname{Id}_C$ and $f \circ g \sim \operatorname{Id}_D$.

Let C_* be the chain complex with $C_1 = C_0 = \mathbb{Z}$, all other chain groups trivial, and with $\partial_1(m) = 2m$. Let D_* be the chain complex with $D_1 = D_0 = \mathbb{Z}^2$, all other chain groups trivial, and with $\partial_1(x,y) = (x-y,x+y)$. Prove that C_* and D_* are chain homotopy equivalent.

2013/01/21